Resistência à reação álcali-agregado de argamassas sustentáveis produzidas com rejeitos de scheelita em substituição aos agregados de areia natural

Autores

DOI:

https://doi.org/10.33448/rsd-v10i14.22209

Palavras-chave:

Rejeito de scheelita; Agregado alternativo; agregado alternativo; Argamassa de revestimento; argamassa de revestimento; Reação álcali-agregado.; reação álcali-agregado

Resumo

Neste trabalho, argamassas de revestimento foram produzidas com rejeitos de scheelita (RS) em substituição total ao agregado de areia natural. A composição química e mineralógica do rejeito de scheelita foi determinada por difração de raios-X (DRX) e fluorescência de raios-X (FRX). Amostras de argamassa com proporção em massa de 1:2:9 (cimento: cal: areia/rejeito de scheelita) foram preparadas com e sem o rejeito de scheelita. As argamassas foram avaliadas por porosimetria de intrusão de mercúrio e testes de resistência a compressão e a flexão. A resistência a reação álcali-agregado foi avaliada a partir do teste de expansão de barra e por microscopia eletrônica de varredura (MEV) nas regiões de trincas e poros. Os resultados indicam que até o 22º dia os rejeitos de scheelita não são reativos, no entanto, em 28 dias, a expansão foi deletéria. As imagens de MEV não constataram a presença de gel alcalino amorfo característico da reação álcali-agregado. Portanto, apesar da argamassa com agregado de rejeito de scheelita ter apresentado potencial deletério acima de 28 dias, os testes mecânicos indicam que ela possui potencial para ser utilizada como argamassa de revestimento.

Biografia do Autor

Brunna Lima de Almeida Victor Medeiros, Instituto Federal de Educação, Ciência e Tecnologia da Paraíba

Graduate Program in Materials Science and Engineering (PPG-CEMat), Federal University of Campina Grande, Av. Aprígio Veloso - 882, Bodocongó, 58 429 - 900, Campina Grande, PB, Brazil.

Jucielle Veras Fernandes, Universidade Federal de Campina Grande

Graduate Program in Materials Science and Engineering (PPG-CEMat), Federal University of Campina Grande, Av. Aprígio Veloso - 882, Bodocongó, 58 429 - 900, Campina Grande, PB, Brazil.

Fabiana Pereira da Costa, Universidade Federal de Campina Grande

Graduate Program in Materials Science and Engineering (PPG-CEMat), Federal University of Campina Grande, Av. Aprígio Veloso - 882, Bodocongó, 58 429 - 900, Campina Grande, PB, Brazil.

Sâmea Valensca Alves Barros, Universidade Federal Rural do Semi-Árido

Engineering Department, Federal Rural University of Semi-Arid , Rua Gamaliel Martins Bezerra, Alto da Alegria, 59515-000, Angicos - RN, Brazil.

Alisson Mendes Rodrigues, Universidade Federal de Campina Grande

Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Bodocongó, 58 429 - 900, Campina Grande, PB, Brazil.

Gelmires de Araújo Neves, Universidade Federal de Campina Grande

Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Bodocongó, 58 429 - 900, Campina Grande, PB, Brazil.

Referências

Alekseev, K., Mymrin, V., Avanci, M. A., Klitzke, W., Magalhães, W. L. E., Silva, P. R., Catai, R. E., Silva, D. A., & Ferraz, F. A. (2019). Environmentally clean construction materials from hazardous bauxite waste red mud and spent foundry sand. Construction and Building Materials, 229, 116860. https://doi.org/10.1016/j.conbuildmat.2019.116860

Almeida, E. P., Carreiro, M. E. A., Rodrigues, A. M., Ferreira, H. S., Santana, L. N. L., Menezes, R. R., & Neves, G. A. (2021). A new eco-friendly mass formulation based on industrial mining residues for the manufacture of ceramic tiles. Ceramics International, 47(8), 11340–11348. https://doi.org/10.1016/j.ceramint.2020.12.260

ASTM C1260-21, Standard test method for potential alkaline reactivity of aggregates (mortar-bar method). (n.d.). ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C1260-21

ASTM C128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. (2015). ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0128-15

ASTM C1437-20, Standard Test Method for Flow of Hydraulic Cement Mortar. (2020). ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C1437-20

ASTM C270-19ae1, Standard Specification for Mortar for Unit Masonry. (2019). ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0270-19AE01

ASTM C29 / C29M-17a, Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. (2017). ASTM International, West Conshohocken. https://doi.org/10.1520/C0029_C0029M-17A

Barreto Santos, M., de Brito, J., Santos Silva, A., & Hawreen, A. (2021). Evaluation of alkali-silica reaction in recycled aggregates: The applicability of the mortar bar test. Construction and Building Materials, 299, 124250. https://doi.org/10.1016/J.CONBUILDMAT.2021.124250

Barros, S. V. A., Marciano, J. E. A., Ferreira, H. C., Menezes, R. R., & Neves, G. D. A. (2016). Addition of quartzite residues on mortars: Analysis of the alkali aggregate reaction and the mechanical behavior. In Construction and Building Materials (Vol. 118, pp. 344–351). https://doi.org/10.1016/j.conbuildmat.2016.05.079

Choi, Y. C., & Choi, S. (2015). Alkali–silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions. Construction and Building Materials, 99, 279–287. https://doi.org/10.1016/J.CONBUILDMAT.2015.09.039

Coppio, G. J. L., de Lima, M. G., Lencioni, J. W., Cividanes, L. S., Dyer, P. P. O. L., & Silva, S. A. (2019). Surface electrical resistivity and compressive strength of concrete with the use of waste foundry sand as aggregate. Construction and Building Materials, 212, 514–521. https://doi.org/10.1016/J.CONBUILDMAT.2019.03.297

De Grazia, M. T., Goshayeshi, N., Gorga, R., Sanchez, L. F. M., Santos, A. C., & Souza, D. J. (2021). Comprehensive semi-empirical approach to describe alkali aggregate reaction (AAR) induced expansion in the laboratory. Journal of Building Engineering, 40, 102298. https://doi.org/10.1016/J.JOBE.2021.102298

Evaristo De Oliveira Neto, R., De Melo Cartaxo, J., Mendes Rodrigues, A., De Araújo Neves, G., Rodrigues Menezes, R., Pereira Da Costa, F., Valensca, S., & Barros, A. (2021). Durability Behavior of Mortars Containing Perlite Tailings: Alkali-Silicate Reaction Viewpoint. https://doi.org/10.3390/su13169203

Fernandes, J. V., Guedes, D. G., da Costa, F. P., Rodrigues, A. M., Neves, G. de A., Menezes, R. R., & Santana, L. N. de L. (2020). Sustainable Ceramic Materials Manufactured from Ceramic Formulations Containing Quartzite and Scheelite Tailings. Sustainability, 12(22), 9417. https://doi.org/10.3390/su12229417

Figueirêdo, J. M. R. de, Costa, F. P. da, Fernandes, J. V., Rodrigues, A. M., Neves, G. de A., Menezes, R. R., & Santana, L. N. de L. (2020). Development of Scheelite Tailings-Based Ceramic Formulations with the Potential to Manufacture Porcelain Tiles, Semi-Stoneware and Stoneware. Materials, 13(22), 5122. https://doi.org/10.3390/ma13225122

Furberg, A., Arvidsson, R., & Molander, S. (2019). Environmental life cycle assessment of cemented carbide (WC-Co) production. Journal of Cleaner Production, 209, 1126–1138. https://doi.org/10.1016/J.JCLEPRO.2018.10.272

Hoppe Filho, J., Pires, C. A. O., Leite, O. D., Garcez, M. R., & Medeiros, M. H. F. (2021). Red ceramic waste as supplementary cementitious material: Microstructure and mechanical properties. Construction and Building Materials, 296, 123653. https://doi.org/10.1016/J.CONBUILDMAT.2021.123653

Huseien, G. F., Sam, A. R. M., Mirza, J., Tahir, M. M., Asaad, M. A., Ismail, M., & Shah, K. W. (2018). Waste ceramic powder incorporated alkali activated mortars exposed to elevated Temperatures: Performance evaluation. Construction and Building Materials, 187, 307–317. https://doi.org/10.1016/J.CONBUILDMAT.2018.07.226

Leemann, A. (2017). Raman microscopy of alkali-silica reaction (ASR) products formed in concrete. Cement and Concrete Research, 102, 41–47. https://doi.org/10.1016/J.CEMCONRES.2017.08.014

Matias, G., Torres, I., Rei, F., & Gomes, F. (2020). Analysis of the functional performance of different mortars with incorporated residues. Journal of Building Engineering, 29, 101150. https://doi.org/10.1016/J.JOBE.2019.101150

Medeiros, A. G., Gurgel, M. T., da Silva, W. G., de Oliveira, M. P., Ferreira, R. L. S., & de Lima, F. J. N. (2021). Evaluation of the mechanical and durability properties of eco-efficient concretes produced with porcelain polishing and scheelite wastes. Construction and Building Materials, 296, 123719. https://doi.org/10.1016/J.CONBUILDMAT.2021.123719

Munhoz, G. S., Dobrovolski, M. E. G., Pereira, E., & Medeiros-Junior, R. A. (2021). Effect of improved autogenous mortar self-healing in the alkali-aggregate reaction. Cement and Concrete Composites, 117, 103905. https://doi.org/10.1016/J.CEMCONCOMP.2020.103905

Pereira-De-Oliveira, L. A., Castro-Gomes, J. P., & Santos, P. M. S. (2012). The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Construction and Building Materials, 31, 197–203. https://doi.org/10.1016/J.CONBUILDMAT.2011.12.110

Rashidian-Dezfouli, H., & Rangaraju, P. R. (2021). Study on the effect of selected parameters on the alkali-silica reaction of aggregate in ground glass fiber and fly ash-based geopolymer mortars. Construction and Building Materials, 271, 121549.

https://doi.org/10.1016/J.CONBUILDMAT.2020.121549

Samadi, M., Huseien, G. F., Mohammadhosseini, H., Lee, H. S., Abdul Shukor Lim, N. H., Tahir, M. M., & Alyousef, R. (2020). Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825. https://doi.org/10.1016/J.JCLEPRO.2020.121825

Souza, M. M., Anjos, M. A. S., & Sá, M. V. V. A. (2021). Using scheelite residue and rice husk ash to manufacture lightweight aggregates. Construction and Building Materials, 270, 121845. https://doi.org/10.1016/J.CONBUILDMAT.2020.121845

Torres, I., Matias, G., & Faria, P. (2020). Natural hydraulic lime mortars - The effect of ceramic residues on physical and mechanical behaviour. Journal of Building Engineering, 32, 101747. https://doi.org/10.1016/J.JOBE.2020.101747

Yang, T., Zhang, Z., Wang, Q., & Wu, Q. (2020). ASR potential of nickel slag fine aggregate in blast furnace slag-fly ash geopolymer and Portland cement mortars. Construction and Building Materials, 262, 119990. https://doi.org/10.1016/J.CONBUILDMAT.2020.119990

Yin, C., Ji, L., Chen, X., Liu, X., & Zhao, Z. (2020). Efficient leaching of scheelite in sulfuric acid and hydrogen peroxide solution. Hydrometallurgy, 192, 105292. https://doi.org/10.1016/J.HYDROMET.2020.105292

Downloads

Publicado

14/11/2021

Como Citar

MEDEIROS, B. L. de A. V. .; FERNANDES, J. V.; COSTA, F. P. da; BARROS, S. V. A.; RODRIGUES, A. M.; NEVES, G. de A. Resistência à reação álcali-agregado de argamassas sustentáveis produzidas com rejeitos de scheelita em substituição aos agregados de areia natural. Research, Society and Development, [S. l.], v. 10, n. 14, p. e567101422209, 2021. DOI: 10.33448/rsd-v10i14.22209. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22209. Acesso em: 17 jul. 2024.

Edição

Seção

Engenharias