Biochar e Trichoderma spp. no manejo de doenças de plantas causadas por patógenos fúngicos do solo: uma revisão e perspectiva

Autores

DOI:

https://doi.org/10.33448/rsd-v10i15.22465

Palavras-chave:

Carbono negro; Biocontrole; Saúde do solo; Práticas de manejo; Promoção de crescimento de plantas.

Resumo

Uma melhor compreensão do uso do biochar com Trichoderma spp. (TRI), considerada a ferramenta mais estudada para o controle biológico, aumentaria nossa capacidade de estabelecer prioridades. No entanto, não existem estudos utilizando os dois insumos no manejo de doenças de plantas. Aqui, hipotetizamos que o biochar e o TRI seriam usados para o manejo de patógenos vegetais transmitidos pelo solo, principalmente devido às mudanças nas propriedades do solo e suas interações. Para testar essa hipótese, esta revisão avalia artigos que usaram biochar e TRI contra doenças de plantas e resumimos os mecanismos de manuseio para cada entrada. Biochar atua por mecanismos: indução à resistência das plantas, sorção de compostos alelopáticos e fungitóxicos, aumento de microrganismos benéficos, altera as propriedades do solo que promovem a saúde e a disponibilidade de nutrientes. Trichoderma como agente de biocontrole por diferentes mecanismos: micoparasitismo, produção enzimática e metabólica secundária, agente promotor de plantas, agente de decomposição natural e agente biológico de biorremediação. No geral, nossos resultados expandem nosso conhecimento sobre o reaproveitamento de resíduos transformados em biochar combinado com Trichoderma, perspectiva potencial para formular produtos como ferramenta alternativa de manejo de doenças de plantas causadas por patógenos fúngicos de solo e adicionar informações importantes que podem ser adequadas para o desenvolvimento de estratégia para uso em o conceito de saúde global.

Referências

Ajeng, A. A., Abdullah, R., Ling, T. C., Ismail, S., Lau, B. F., Ong, H. C., & Chang, J. S. (2020). Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environmental Technology & Innovation, 101168. https://doi org/10 1016/j eti 2020 101168

Al-ani, L. K. T., & Albaayit, S. F. A. (2018). Antagonistic of some Trichoderma against Fusarium oxysporum sp f cubense tropical race 4 (FocTR4).

The Eurasia Proceedings of Science, Engineering & Mathematics, 2, 35–38.

Alfiky, A. (2019). Effects of ultraviolet irradiation on the in vitro antagonistic potential of Trichoderma spp against soil-borne fungal pathogens. Heliyon 5(7), e02111. https://doi org/e02111 10 1016/j heliyon 2019 e02111

Bettiol, W., Pinto, Z. V., da Silva, J. C., Forner, C., de Faria, M. R., Pacifico, M. G., Costa, L. S. A. S. (2019). Produtos comerciais à base de Trichoderma Trichod 1:45.

Bhandari, D. (2017). Bio-control ability of Trichoderma species against spot blotch disease (wheat) causing pathogen Bipolaris sorokiniana under in vitro condition. Journal of Bioscience and Agriculture Research, 14(02): 1194–1201. https://doi org/10 18801/jbar 140217 147

Bora, B., & Ali, M. S. (2019). Evaluation of Microbial Antagonists against Sarocladium oryzae Causing Sheath Rot Disease of Rice (Oryzae sativa L). International Journal of Current Microbiology and Applied Sciences, 8(7), 1755–1760. https://doi org/10 20546/ijcmas 2019 807 208

Chagas. L. F. B., Junior, A. F. C., Soares, L. P., & Fidelis, R. R. (2017). Trichoderma na promoção do crescimento vegetal. Journal of Neotropical Agriculture, 4(3): 97–102. https://doi org/10 32404/rean v4i3 1529

Chaudhary, S., Sagar, S., Lal, M., Tomar, A., Kumar, V., & Kumar, M. (2020). Biocontrol and growth enhancement potential of Trichoderma spp against Rhizoctonia solani causing sheath blight disease in rice. Journal of Environmental Biology, 41(5), 1034–1045. https://doi org/10 22438/jeb/41/5/MRN-1303

Checa, C. O. E., Toro, C. M., & Descanse, V. J. (2017). Antagonism of Trichoderma spp. strains against pea (Pisum sativum L.) Fusarium wilt caused by Fusarium oxysporum f. sp. pisi. Acta Agronómica, 66(3), 442–448.

Cherkupally, R., Amballa, H., & Reddy, B. N. (2017). In vitro antagonistic activity of Trichoderma species against Fusarium oxysporum f sp melongenae. International Journal of Applied Agricultural Research, 12(1), 87–95.

Coelho. L., Reis, M., Guerrero, C., & Dionísio, L. (2020). Use of organic composts to suppress bentgrass diseases in Agrostis stolonifera. Biological control, 141, 104154. https://doi org/10 1016/j biocontrol 2019 104154

Da Silva, J. A. T., de Medeiros, E. V., da Silva, J. M., Tenório, D. D. A., Moreira, K. A., Nascimento, T. C. E. D. S., & Souza‐Motta, C. (2016). Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 are biocontrol agents that act against cassava root rot through different mechanisms. Journal of Phytopathology, 164(11–12), 1003–1011. https://doi org/10 1111/jph 12521

Dendouga, W., Boureghda, H., & Belhamra, M. (2016). Biocontrol of wheat Fusarium crown and root rot by Trichoderma spp and evaluation of their cell wall degrading enzymes activities. Acta Phytopathologica et Entomologica Hungarica, 51(1), 1–12. https://doi org/10 1556/038 51 2016

Elamathi, E., Malathi, P., Viswanathan, R., & Sundar, A. R. (2018). Expression analysis on mycoparasitism related genes during antagonism of Trichoderma with Colletotrichum falcatum causing red rot in sugarcane. Journal of Plant Biochemistry and Biotechnology, 27(3), 351–361. https://doi org/10 1007/s13562-018-0444-z

El-Gremi, S. M., Draz, I. S., & Youssef, W. A. E. (2017). Biological control of pathogens associated with kernel black point disease of wheat. Crop Protection, 91, 13–19. http://dx doi org/10 1016/j cropro 2016 08 034 0261-2194

Elhadidy, A. E. (2019). Performance of some new bioformulations against tomato fusarium wilt. Egyptian Journal of Desert Research, 69(1), 1–19. http://dx doi org/10 21608/ejdr 2019 10162 1022

Elshahawy, I. E., & El-Mohamedy, R. S. (2019). Biological control of Pythium damping-off and root-rot diseases of tomato using Trichoderma isolates employed alone or in combination. Journal of Plant Pathology, 101(3), 597–608. https://doi org/10 1007/s42161-019-00248-z

Foster, E. J., Hansen, N., Wallenstein, M., & Cotrufo, M. F. (2016). Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agriculture, Ecosystems & Environment, 233: 404–414. https://doi org/10 1016/j agee 2016 09 029

Galletti, S., Paris, R., & Cianchetta, S. (2020) Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fusarium verticillioides challenge. Microbiological Research, 233, 126406. https://doi org/10 1016/j micres 2019 126406

Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R., & Kariman, K. (2018). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117, 147–157. https://doi org/10 1016/j biocontrol 2017 11 006

Haddad, P. E., Leite, L. G., Lucon, C. M. M., & Harakava, R. (2017). Selection of Trichoderma spp strains for the control of Sclerotinia sclerotiorum in soybean. Pesquisa Agropecuária Brasileira, 52(12), 1140–1148.

He, A. L., Jia, Liu., Wang, X. H., Zhang, Q. G., Wei, S., & Jie, C. (2019). Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. Journal of Integrative Agriculture, 18(3), 599–606.

Hirpara, D. G., Gajera, H. P., Hirpara, H. Z., & Golakiya, B. A. (2016). Molecular diversity and fingerprints of Trichoderma associated with antagonistic potentials against Sclerotium rolfsii Sacc. Journal of Plant Diseases and Protection, 124(1), 31–40. https://doi org/10 1007/s41348-016-0053-9

Hirpara, D. G., Gajera, H. P., Hirpara, H. Z., & Golakiya, B. A. (2017). Antipathy of Trichoderma against Sclerotium rolfsii Sacc: evaluation of cell wall-degrading enzymatic activities and molecular diversity analysis of antagonists. Journal of Molecular Microbiology and Biotechnology, 27(1): 22–28. https://doi org/10 1159/000452997

Hong, S., Jv, H., Lu, M., Wang, B., Zhao, Y., & Ruan, Y. (2020). Significant decline in banana Fusarium wilt disease is associated with soil microbiome reconstruction under chilli pepper-banana rotation. European Journal of Soil Biology, 97, 103154. https://doi org/10 1016/j ejsobi 2020 103154

Jaiswal, A. K., Elad, Y., Cytryn, E., Graber, E. R., & Frenkel, O. (2018). Activating biochar by manipulating the bacterial and fungal microbiome through pre‐conditioning. New Phytologist, 219(1), 363–377. https://doi org/10 1111/nph 15042

Jiang, H., Zhang, L., Zhang, J. Z., Ojaghian, M. R., & Hyde, K. D. (2016). Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro. Journal of Zheijang University Science B, 17(4), 271–281. http://dx doi org/10 1631/jzus B1500243

Kazerooni, E. A., Al-Shibli, H., Nasehi, A., & Al-Sadi, A. M. (2020). Endophytic Enterobacter cloacae exhibits antagonistic activity against Pythium damping-off of cucumber. Ciência Rural, 50(8), e20191035. https://doi org/10 1590/0103-8478cr20191035

Khaled, N., & Taheri, P. (2016). Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. Journal of Plant Protection Research, 56(1), 21–31. https://doi org/10 1515/jppr-2016-0004

Khalili, E., Javed, M. A., Huyop, F., Rayatpanah, S., Jamshidi, S., & Wahab, R. A. (2016). Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Biotechnology & Biotechnological Equipment, 30(3), 479–488. https://doi org/10 1080/13102818 2016 1147334

Kumar, G., Maharshi, A., Patel, J., Mukherjee, A., Singh, H. B., & Sarma, B. K. (2017). Trichoderma: a potential fungal antagonist to control plant diseases. SATSA Mukhapatra Annual Technical Issue, 21, 206–218.

Kuzmanovska, B., Rusevski, R., Jankulovska, M., & Oreshkovikj, K. B. (2018). Antagonistic activity of Trichoderma asperellum and Trichoderma harzianum against genetically diverse Botrytis cinerea isolates. Chilean Journal of Agricultural Research, 78(3), 391–399. http://dx doi org/10 4067/S0718-58392018000300391

Larkin, R. P., & Brewer, M. T. (2020). Effects of crop rotation and biocontrol amendments on Rhizoctonia disease of potato and soil microbial communities. Agriculture 10(4), 128. https://doi org/10 3390/agriculture10040128

Larran, S., Santamarina, S. M. P., Roselló, C. J., Simón, M. R., & Perelló, A. (2020). In vitro antagonistic activity of Trichoderma harzianum against Fusarium sudanense causing seedling blight and seed rot on wheat. ACS omega, 5(36), 23276–23283. https://doi org/10 1021/acsomega 0c03090

Lee, S., Yap, M., Behringer, G., Hung, R., & Bennett, J. W. (2016). Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biology and Biotechnology, 3(1), 1–14. https://doi org/10 1186/s40694-016-0025-7

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology & Biochemistry, 43(9), 1812–1836. https://doi org/10 1016/j soilbio 2011 04 022

Li, Y., Sun, R., Yu, J., Saravanakumar, K., & Chen, J. (2016). Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the maize stalk rot pathogen Fusarium graminearum. Indian Journal of Microbiology Research, 56(3), 318–327. https://doi org/10 1007/s12088-016-0581-9

Lima, J. R., de Moraes, S. W., de Medeiros, E. V., Duda, G. P., Corrêa, M. M., Martins Filho, A. P., & Hammecker, C. (2018). Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma, 319, 14–23. https://doi org/10 1016/j geoderma 2017 12 033

Liu, J., Ding, Y., Ji, Y., Gao, G., & Wang, Y. (2020). Effect of maize straw biochar on bacterial communities in agricultural soil. Bulletin of Environmental Contamination and Toxicology, 104: 333–338. http://dx doi org/10 1007/s00128-020-02793-1

Lu, Z. X., Tu, G. P., Zhang, T., Li, Y. Q., Wang, X., H., Zhang, Q. G., & Jie, C. (2020). Screening of antagonistic Trichoderma strains and their application for controlling stalk rot in maize. Journal of Integrative Agriculture, 19(1), 145–152. https://doi org/10 1016/S2095-3119(19)62734-6

Moosa, A., Sahi, S. T., Haq, I. U., Farzand, A., Khan, S. A., & Javaid, K. (2017). Antagonistic potential of Trichoderma isolates and manures against Fusarium wilt of tomato. International Journal of Vegetable Science, 23(3), 207–218. https://doi org/10 1080/19315260 2016 1232329

Muter, O., Grantina-Ievina, L., Makarenkova, G., Vecstaudza, D., Strikauska, S., Selga, T., & Steiner, C. (2017). Effect of biochar and Trichoderma application on fungal diversity and growth of Zea mays in a sandy loam soil. Environmental and Experimental Biology, 15(4), 289–296. https://doi org/10 22364/eeb 15 30

Medeiros, E. V., Moraes, M. C., Costa, D. P., Silva, J. S., Oliveira, J. B., José, R. S., & Hammecker, C. (2020a). Biochar and Trichoderma aureoviride applied to the sandy soil: effect on soil quality and watermelon growth. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 735–751. https://doi org/10 15835/nbha48211851

Medeiros, E. V., Moraes, M. C. H. S., Costa, D. P., Duda, G. P., Oliveira, J. B., Silva, J. A., Lima, J. R. S., & Hammecker, C. (2020b). Effect of biochar and inoculation with Trichoderma aureoviride on melon growth and sandy Entisol quality. Australian Journal of Crop Science. 14(06), 971–977. https://doi org/10 21475/ajcs 20 14 06 p2302

Medeiros, E. V., Lima, N. T., de Sousa Lima, J. R., Pinto, K. M., S., da Costa, D. P., Junior, C. L. F., & Hammecker, C. (2021). Biochar as a strategy to manage plant diseases caused by pathogens inhabiting the soil: a critical review. Phytoparasitica 1, 1–14. https://doi org/10 1007/s12600-021-00887-y

Montiel-Rozas, D. M., M., Hurtado-Navarro, M., Díez-Rojo, M. Á., Pascual, J. A., & Ros, M. (2019). Sustainable alternatives to 1, 3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in Mediterranean soils: Efficacy and effects on soil quality. Environmental Pollution, 247, 1046–1054.

Nawaz, K., Shahid, A. A., Bengyella, L., Subhani, M. N., Ali, M., Anwar, W., & Ali, S. W. (2018). Diversity of Trichoderma species in chili rhizosphere that promote vigor and antagonism against virulent Phytophthora capsici. Scientia Horticulturae, 239, 242–252. https://doi org/10 1016/j scienta 2018 05 048

Nawrocka, J., & Małolepsza, U. (2013). Diversity in plant systemic resistance induced by Trichoderma. Biological control, 67(2), 149–156. https://doi org/10 1016/j biocontrol 2013 07 005

Nwankiti, A. O., & Gwa, V. I. (2018). Evaluation of antagonistic effect of Trichoderma harzianum against Fusarium oxysporum causal agent of white yam (Dioscorearotundata poir) tuber rot. Trends in Technical & Scientific Research, 1(1), 555554. https://doi org/10 19080/TTSR 2018 01 555554

Pimentel, M. F., Arnão, E., Warner, A. J., Subedi, A., Rocha, L. F., Srour, A., & Fakhoury, A. M. (2020). Trichoderma isolates inhibit Fusarium virguliforme growth, reduce root rot, and induce defense-related genes on soybean seedlings. Plant Disease, 104(7), 1949–1959. https://doi org/10 1094/PDIS-08-19-1676-RE

Sallam, N. M., Eraky, A. M., & Sallam, A. (2019). Effect of Trichoderma spp on Fusarium wilt disease of tomato. Molecular Biology Reports, 46(4), 4463–4470. https://doi org/10 1007/s11033-019-04901-9

Sani, M. N. H., Hasan, M., Uddain, J., & Subramaniam, S. (2020). Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced NPK fertilization. Annals of Agricultural Sciences, 65(1), 107–115. https://doi org/10 1016/j aoas 2020 06 003

Saravanakumar, K., Li, Y., Yu, C., Wang, Q. Q., Wang, M., Sun, J., & Chen, J. (2017). Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Scientific Reports, 7(1), 1–13. https://doi org/10 1038/s41598-017-01680-w

Silva, J. A. T., de Medeiros, E. V., da Silva, J. M., Tenório, D. D. A., Moreira, K. A., da Silva Nascimento, T. C. E., & Souza-Motta, C. (2017). Antagonistic activity of Trichoderma spp against Scytalidium lignicola CMM 1098 and antioxidant enzymatic activity in cassava. Phytoparasitica, 45(2), 219–225. https://doi org/10 1007/s12600-017-0578-x

Silva, C. C. G. D., Medeiros, E. V. D., Fracetto, G. G. M., Fracetto, F. J. C., Martins Filho, A. P., Lima, J. R. D. S., & Hammecker, C. (2021). Coffee waste as an eco-friendly and low-cost alternative for biochar production impacts on sandy soil chemical attributes and microbial gene abundance. Bragantia. 80. https://doi org/10 1590/1678-4499 20200459

Stocco, M. C., Mónaco, C. I., Abramoff, C., Lampugnani, G., Salerno, G., Kripelz, N., & Consolo, V. F. (2016). Selection and characterization of Argentine isolates of Trichoderma harzianum for effective biocontrol of Septoria leaf blotch of wheat. World Journal of Microbiology & Biotechnology, 32(3), 49. https://doi org/10 1007/s11274-015-1989-9

Sumida, C. H., Daniel, J. F., Araujod, A. P. C., Peitl, D. C., Abreu, L. M., Dekker, R. F., & Canteri, M. G. (2018). Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants. Biocontrol Science and Technology, 28(2), 142–156. https://doi org/10 1080/09583157 2018 1430743

Vinodkumar, S., Indumathi, T., & Nakkeeran, S. (2017). Trichoderma asperellum (NVTA2) as a potential antagonist for the management of stem rot in carnation under protected cultivation. Biological control, 113, 58–64. https://doi org/10 1016/j biocontrol 2017 07 001

Wang, K. D., Borrego, E. J., Kenerley, C. M., & Kolomiets, M. V. (2020) Oxylipins other than jasmonic acid are xylem-resident signals regulating systemic resistance induced by Trichoderma virens in maize. The Plant Cell, 32(1), 166–185. https://doi org/10 1105/tpc 19 00487

Zhang, F., Ge, H., Zhang, F., Guo, N., Wang, Y., Chen, L., & Li, C. (2016). Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiology and Biochemistry, 100, 64–74. http://dx doi org/10 1016/j plaphy 2015 12 017

Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp for agriculture applications. Annals of Agricultural Sciences, 65(2), 168–178. http://dx doi org/10 1016/j aoas

Zúñiga-Mendoza, E., & Ceja-Torres, L. F. (2017). In vitro antagonism of Trichoderma harzianum on Sclerotium cepivorum Berk and S rolfsii Sacc, causal agents of onion rot Phyton. Inter. Journal of Experimental Botany, 86, 7–13. http://dx doi org/10 32604/phyton 2017 86 007

Downloads

Publicado

27/11/2021

Como Citar

MEDEIROS, E. V. de .; SILVA , L. F. da .; SILVA, J. S. A. da .; COSTA , D. P. da .; SOUZA, C. A. F. de .; BERGER , L. R. R. .; LIMA , J. R. de S. .; HAMMECKER, C. . Biochar e Trichoderma spp. no manejo de doenças de plantas causadas por patógenos fúngicos do solo: uma revisão e perspectiva. Research, Society and Development, [S. l.], v. 10, n. 15, p. e296101522465, 2021. DOI: 10.33448/rsd-v10i15.22465. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22465. Acesso em: 5 jan. 2025.

Edição

Seção

Artigos de Revisão