Remoção de óleo em batelada e fluxo contínuo utilizando argila organofílica e membrana cerâmica de baixo custo

Autores

DOI:

https://doi.org/10.33448/rsd-v10i15.22542

Palavras-chave:

Membrana de baixo custo; Membrana cerâmica; Adsorção em batelada; Águas residuais oleosas; Rejeição de óleo.

Resumo

O objetivo deste trabalho foi comparar dois sistemas de tratamento de efluentes oleosos, processo em batelada e processo de separação por membrana (PSM). No processo em batelada foi utilizada uma argila organofílica e no PSM foi utilizada uma membrana cerâmica de baixo custo. Uma argila de bofe foi utilizada como matéria-prima para a preparação de argila organofílica preparada com surfactante, via método direto e caracterizada por difração de raios-X. As propriedades de sorção desta organofílica foram avaliadas para remover o óleo. A membrana cerâmica de baixo custo em forma de disco foi obtida a partir de argila de bofe natural de Boa-Vista, Paraíba, Brasil. Foi utilizado o método de compactação uniaxial a seco e sinterização a 650 ° C. A membrana foi caracterizada por DRX e permeabilidade à água e seu desempenho foi avaliado por testes de separação emulsão óleo/água de um efluente sintético, utilizando um módulo de aço inoxidável nas condições de concentração inicial da emulsão 125 mg.L-1, temperatura de 25 °C e pressão de 2,0 bar. Conclui-se que os dois processos (PSM e sistema batelada utilizando argila organofílica bofe como adsorvente) podem ser utilizados e são promissores para o tratamento de água oleosa.

Referências

Abuhasel, K., Kchaou, M., Alquraish, M., Munusamy, Y. & Jeng, Y. T. (2021). Oily Wastewater Treatment: Overview of Conventional and Modern Methods, Challenges, and Future Opportunities. Water, 3, 980. https://doi.org/10.3390/w13070980

Almeida F.A., Botelho E.C., Melo F.C.L., Campos T.M.B., & Thim G.P. (2009). Influence of cassava starch content and sintering temperature on the alumina consolidation technique. Journal of European Ceramic Society, 29, 1587-1594. https://doi.org/10.1016/j.jeurceramsoc.2008.10.006

Alzahrani, S., Mohammad, A.W. (2014). Challenges and trends in membrane technology implementation for produced water treatment: A review. Journal of Water Process Engineering, 4, 107–133. http://dx.doi.org/10.1016/j.jwpe.2014.09.007

Araújo, A. P. (2010). 80p. Síntese de membranas zeolíticas (Y/membrana cerâmica) visando sua aplicação na catálise. Dissertação (Mestrado em Engenharia

Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.

Araújo, A. P. (2014). 110p. Avaliação da influência dos parâmetros de síntese na preparação de membranas zeoliticas Y/α-alumina. Tese (Doutorado em

Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.

Araújo, A. P., & Rodrigues, M. G. F. (2012). Síntesis de una membrana zeolítica de tipo y soportada en α‐alúmina: efecto del tratamiento térmico sobre la estructura. Avances en ciencias e ingeniería, 3, 51-58.

Araújo, A.P., Brito, A. L. F., Cunha, R. S. S., & Rodrigues, M. G. F. (2014). Efeito de diferentes concentrações de sílica sobre a sintese da membrana zeolítica (Zeólita Y/α-alumina), In Anais do CITEM - IX Ibero-American Congress on Membrane Science and Technology.

Araújo, A. P., Silva, V. J., Crispim, A. C., Menezes, R. R., & Rodrigues, M. G. F. (2010). Synthesis of Zeolite Membrane (Y/α-Alumina). Materials Science Forum, 660-661, 1058-1063. http://doi.org/10.4028/www.scientific.net/MSF.660-661.1058

Barbosa A.S., Barbosa AS, & Rodrigues, M. G. F. (2019). Influence of the methodology on the formation of zeolite membranes MCM-22 for the oil/water emulsion separation. Cerâmica. 65, 531-540. http://dx.doi.org/10.1590/0366-69132019653762676

Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2019). Influence of the methodology on the formation of zeolite membranes MCM-22 for the oil/water emulsion separation. Ceramica, 65(376), 531–540. https://doi.org/10.1590/0366-69132019653762676

Barbosa, A.S. (2009). 98p. Síntese de membranas zeolíticas (MCM-22/membrana cerâmica), em escala de laboratório, utilizando o método de síntese

hidrotérmica. Dissertação (Mestrado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.

Barbosa, A.S. (2013). 107p. Preparação de membranas zeolíticas (MCM-22/α-alumina), em escala de laboratório, utilizando rubbing, dip-coating e transporte a vapor. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.

Barbosa, A.S., (2015). 158p. Preparação de membranas zeolíticas (Y/gama-alumina) utilizando diferentes métodos e sua avaliação no processo de separação

emulsão óleo/água. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.

Barbosa, A.S., Barbosa, A.S., & Rodrigues, M.G.F. (2018). Contaminants Removal in Wastewater Using Membrane Adsorbents Zeolite Y/Alpha-Alumina. Materials Science Forum, 912, 12-15. http://doi.org/10.4028/www.scientific.net/MSF.912.12

Barbosa, A.S., Barbosa, A.S., & Rodrigues, M.G.F. (2019). Y-Type Zeolite Membranes: Synthesis by Secondary by Method and Application in Treatment of Oily Effluents. Materials Science Forum, 958, 23-28. https://doi.org/10.4028/www.scientific.net/MSF.958.23

Barbosa, A.S., Barbosa, A.S., & Rodrigues, M.G.F. (2021). Study of the influence of the aluminum source (acetate or sulfate) on the synthesis of the ceramic membrane and applications of emulsion oil water: use and reuse. Research, Society and Development, 10, e75101321023.

Barbosa, A.S., Barbosa, A.S., & Rodrigues, M. G. F. (2015). Synthesis of MCM-22 zeolite membrane on a porous alumina support. Materials Science Forum, 805, 272–278. https://doi.org/10.4028/www.scientific.net/MSF.805.272

Barbosa, A.S., Barbosa, A.S., Barbosa, T. L. A., & Rodrigues, M. G. F. (2018). Synthesis of zeolite membrane (NaY/alumina): Effect of precursor of ceramic support and its application in the process of oil–water separation. Separation and Purification Technology, 200, 141–154. https://doi.org/10.1016/j.seppur.2018.02.001

Barbosa, A.S., Barbosa, A.S., & Rodrigues, M. G. F. (2015). Synthesis of zeolite membrane (MCM-22/α-alumina) and its application in the process of oil-water separation. Desalination and Water Treatment, 56(13), 3665–3672. https://doi.org/10.1080/19443994.2014.995719

Barbosa, T. L. A., Silva, F. M. N., Barbosa, A. S., Lima, E. G., & Rodrigues, M. G. F., (2020). Synthesis and application of a composite NaA zeolite/gamma-alumina membrane for oil-water separation process. Cerâmica, 66, 137–144.

Barredo-Damas S., Alcaina-Miranda M.I., Bes-Piá A., Iborra-Clar M.I., IborraClar A., & Mendoza-Roca J.A. (2010). Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination, 250, 623-628. https://doi.org/10.1016/j.desal.2009.09.037

Bergaya, F., Theng, B.K.G, & Lagaly, G. (2006). Handbook of Clay Science.

Burggraaf, A.J., Cot, L. (1996). Fundamentals of inorganic membrane science and technology.

Chandradass J., Ki H.K., Dong Sik B., Prasad K., Balachandar G., Athisaya Divya S., et al. (2009). Starch consolidation of alumina: Fabrication and mechanical properties. Journal of the European Ceramic Society, 29, 2219-2224. https://doi.org/10.1016/j.jeurceramsoc.2009.02.001

Cot, L., Ayral, A., Durand, J., Guizard, C., Hovnanian, N., Julbe, A., Larbot, A. (2000). Inorganic membranes and solid state sciences. Solid State Sciences, 2, 313-334. https://doi.org/10.1016/S1293-2558(00)00141-2

Cunha, R. S. S. (2017). 149p. Preparação e caracterização de membranas compósitas tubulares aplicadas a separação emulsão óleo/água. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.

Ebrahimi, M., Kerker, S., Schmitz, O., Schmidt, A.A., & Czermak, P. (2017). Evaluation of the Fouling Potential of Ceramic Membrane Configurations Designed for the Treatment of Oilfield Produced Water. Separation Science and Technology, 53, 349-363. https://doi.org/10.1080/01496395.2017.1386217

Ferrage, E. (2016). Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perpectives. Clays and Clay Minerals, 64, 346-71. http://doi.org/10.1346/CCMN.2016.0640401

Ghouil, B., Harabi, A., Bouzerara, F., Brihi, N. (2016). Elaboration and characterization of ceramic membrane supports from raw materials used in microfiltration, Desalination and Water Treatment, 57, 5241-5245. https://doi: 10.1080/19443994.2015.1021098

Gupta, R. K., Dunderdale, G. J., England, M. W. & Hozumi, A. (2017). Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry, 5, 16025-16058.

Hazlett, R.N. (1969). Fibrous bed coalescence of water-steps in coalescence process. Industrial & Engineering Chemistry Fundamentals, 8, 625–632.

He, Z., Lyu, Z., Gu, Q., Zhang, L., Wang, J. (2019). Ceramic-based membranes for water and wastewater treatment. Colloids and Surfaces A Physicochemical and Engineering Aspects, 578, 123513. https://doi.org/10.1016/j.colsurfa.2019.05.074

Hsieh H.P. (1996). Inorganic membranes for separation and reaction.

Kaur H., Bulasara V.K., Gupta R.K. (2016). Preparation of kaolin-based low-cost porous ceramic supports using different amounts of carbonates. Desalination and Water Treatment, 57, 15154-15163. https://doi.org/10.1080/19443994.2015.1068226

Kaur H., Kumar V., Raj B., Gupta K. (2016). Effect of carbonates composition on the permeation characteristics of low-cost ceramic membrane supports. Journal of Industrial and Engineering Chemistry, 44, 185-194. https://doi.org/10.1016/j.jiec.2016.08.026

Le, T.V., Imai, T., Higuchi, T., Yamamoto, K., Sekine, M., Doi, R., Vo, H.T., Wei, J. (2013). Performance of tiny microbubbles enhanced with

“normal cyclone bubbles” in separation of fine oil-in-water emulsions. Chemical Engineering Science, 94, 1–6. https://doi.org/10.1016/j.ces.2013.02.044

Lorente-Ayza M.-M., Sánchez E., Sanz V., & Mestre S. (2015). Influence of starch content on the properties of low-cost microfiltration ceramic membranes. Ceramics International, 41, 13064-13073. https://doi.org/10.1016/j.ceramint.2015.07.092

Matsuno, A., Junaid, Z. M., Saito, T., Thi, H., Dang, T., Huyen, P. T., Nga, T. T. V. & Kawamoto, K. (2021). Oil/Water separation techniques using

hydrophobized/oleophilized grains: a review of recent studies. International Journal of GEOMATE, 20, 28-34.

Mercurio, M., Sarkar, B., & Langella, A. (2018). Modified Clay and Zeolite Nanocomposite Materials. Environmental and Pharmaceutical Applications.

Mestre, S., Gozalbo, A., Lorente-Ayza, M. M., & Sánchez, E. (2019). Low-cost ceramic membranes: A research opportunity for industrial application, Journal of the European Ceramic Society, 39, 3392-3407. https://doi.org/10.1016/j.jeurceramsoc.2019.03.054

Monash, V., & Pugazhenthi, G. (2011). Development of Ceramic Supports Derived from Low-Cost Raw Materials Membrane Applications and its Optimization Based on Sintering Temperature. International Journal of Applied Ceramic Technology, 8, 227-238. https://doi.org/10.1111/j.1744-7402.2009.02443.x

Mota M. F., Silva J. A., Queiroz M. B., Laborde H. M., & Rodrigues M. G. F. (2011). Organophilic clay for oil/water separation process by finite bath tests. Brazilian Journal of Petroleum and Gas, 5, 97-107. http://doi.org/10.5419/bjpg2011-0011.

Mota, J. D. (2017). 145p. Preparação de membranas tubulares compósitas e sua avaliação na separação de emulsão óleo/água: utilização e reutilização. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.

Mota, Mariaugusta Ferreira, Machado, F., & Rodrigues, M. G. F. (2012). Influence of exchanged surfactant on the structure and adsorption properties of brazilian green mud clay. Materials Science Forum, 727–728, 1473–1478. https://doi.org/10.4028/www.scientific.net/MSF.727-728.1473

Nandi, B.K., Uppaluri, R., & Purkait, M. K. (2008). Preparation and characterization of low cost ceramic membranes for micro-filtration applications, Applied Clay Science, 42, 102-110. https://doi.org/10.1016/j.clay.2007.12.001

Oliveira, G.C., Mota M.F., Silva, M.M., Rodrigues, M.G.F., & Laborde, H.M. (2012). Performance of natural sodium Clay treated with ammonium salt in the separation of emulsified oil in water. Brazilian Journal of Petroleum and Gas, 6, 171-183. http://doi.org/10.5419/bjpg2012-0014.

Padaki, M., Surya Murali, R., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassima, M. A., Hilal, N., Ismail, A. F. (2015). Membrane technology enhancement in oil–water separation. A review. Desalination, 357, 2015, 197-207.

Pereira, K. R. O., Hanna, R. A., Ramos Vianna, M. M. G., Pinto, C. A., Rodrigues, M. G. F., & Valenzuela-Diaz, F. R. (2005). Brazilian organoclays as nanostructured sorbents of petroleum-derived hydrocarbons. Materials Research, 8(1), 77–80. https://doi.org/10.1590/s1516-14392005000100014

Queiroz, M. B. (2010). 92p. Síntese de zeólita ZSM-5 e membranas zeolíticas (ZSM-5/α-alumina) através do método hidrotérmico. Dissertação (Mestrado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.

Rezende, M. J., & Pinto A. C. (2016). Esterification of fatty acids using acidactivated Brazilian smectite natural clay as a catalyst. Renewable Energy, 92, 171-7. http://doi.org/10.1016/j.renene.2016.02.004

Rodrigues M. G. F. (2003). Physical and catalytic characterization of smectites from Boa-Vista, Paraíba, Brazil. Cerâmica, 49, 146-150. https://doi.org/10.1590/S0366-69132003000300007

Rodrigues, S. C. G., Queiroz, M.B., Pereira, K.R.O., Rodrigues, M.G.F., & Valenzuela-Diaz, F.R. (2010) Comparative Study of Organophilic Clays to be Used in the Gas & Petrol Industry. Materials Science Forum, 660, 1037-1042.

Santos, E. R. F., 2014. 127p. Síntese das membranas inorgânicas (ZSM-5/gama-alumina, MCM-41/gama-alumina e compósito MFI-MCM-41/gama-alumina) destinadas separação emulsão óleo/água. Dissertação (Mestrado em Engenharia Química), Universidade Federal de Campina Grande. Campina Grande, Paraíba.

Santos, E. R. F., Mota, M. F., Sousa, A. K. F., Silva, M. M., Rodrigues, M. G. F., & Lau, L. Y. (2014). Influência do tipo de semente na síntese da membrana zeolítica ZSM-5/α-alumina, In Anais do CITEM - IX Ibero-American Congress on Membrane Science and Technology.

Santos, E. R. F., Silva, F. M. N., Barbosa, T. L. A., & Rodrigues, M. G. F., (2015). Synthesis and characterization of zeolite membrane Composite MFI/MCM-41, In Anais do 12 International Conference on Catalysis in Membrane Reactors ICCMR12.

Santos, E. R. F., Silva, M. M., Rodrigues, M. G. F., & Lau, L. Y. (2014). Study of two methods in the preparation of zeolite membrane (ZSM-5/alfa-alumina): Rubbing and dip-coating, In Anais do CITEM - IX Ibero-American Congress on Membrane Science and Technology.

Scheibler, J. R., Santos, E. R. F., Barbosa, A. S., & Rodrigues, M. G. F. (2015). Performance of zeolite membrane (ZSM-5/γ-Alumina) in the oil/water separation process. Desalination and Water Treatment, 56(13), 3561–3567. https://doi.org/10.1080/19443994.2014.986536

Scheibler, J. R. (2015). Síntese de membranas zeolíticas (ZSM-5/g-alumina, ZSM-5/a-alumina) por pore-plugging para permeação de N2. Dissertação

(Mestrado em Engenharia Química), Universidade Federal de Campina Grande. Campina Grande, Paraíba.

Silva, E. L., Patrício, A. C. L., Oliveira, G. C., & Rodrigues, M. G. F. (2014) Evaluation of a Sodic Organoclay as Adsorbent for Removing Oil/Water in a Synthetic Wastewater. Materials Science Forum, 798-799: 127-132. http://doi/10.4028/www.scientific.net/MSF.798-799.127

Silva, F. M. N. (2017). 184p. Síntese de membranas zeolíticas (Mordenita/α-alumina) utilizando os métodos de síntese hidrotérmica, dip-coating e transporte em fase vapor e avaliação na separação emulsão óleo/água. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.

Silva, F. M. N., Barbosa, T. L. A., & Rodrigues, M. G. F. (2015). Synthesis and characterization of zeolite membrane MOR dip coating method. In 12 th Internacional Conference on Catalysis in Membrane Reactors.

Silva, F.M.N., Bezerra Junior, A. C., Barbosa, T. L. A., & Rodrigues, M. G. F. (2015). Single gas permeation in ZSM-5 zeolite membrane. In Euromembrane.

Silva, F. M. N., Lima, E. G., Barbosa, T. L. A., & Rodrigues, M.G.F. (2017). Development of MOR Zeolite Membranes Supported nn ɣ-alumina and α-alumina obtained from the decomposition of aluminum sulphate. In 13th Internacional Conference on Catalysis in Membrane Reactors.

Silva, F. M. N.; & Rodrigues, M. G. F. (2015). Preparation and characterization of mordenite inorganic membrane for gas separation. In: Euromembrane.

Silva, L. R. B., Barbosa, T. L. A., & Rodrigues, M. G. F. (2021). Membrana zeolítica NaA : Preparação e aplicação para tratamento de emulsão óleo/água. In Anais do IV CONEPETRO E VI WEPETRO.

Silva, L. R. B., Silva, F. A. S., Barbosa, T.L.A., & Rodrigues, M.G.F. (2021). Membrana cerâmica de baixo custo para tratamento de efluentes oleosos. Research, Society and Development, 10, e253101321071.

Souza Santos, P. (1989). Ciências e Tecnologia de Argilas.

Standard Methods of Testing Sorbent Performance of Adsorbents – Designation: ASTM F726 –99.

Standard Methods of Testing Sorbent Performance of Adsorbents – Designation: ASTM F716 –82 (Reapproved 1993).

Standard Test Methods for Apparent Porosity, Water absorption, Apparent Specific Gravity, and Bulky Density of Burned Refractory Brick and Shapes by Boiling Water – Designation: ASTM C 20 (2000).

Sutherl, K. Filters and Filtration Handbook, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2008.

Tummons, E., Han, Q., Tanudjaja, H. J., Hejase, C. A., Chew, J. W., Tarabara, V. V. (2020). Membrane fouling by emulsified oil: A review. Separation and Purification Technology, 248, 116919. https://doi.org/10.1016/j.seppur.2020.116919

Vasanth, D., Uppaluri, R., & Pugazhenthi, G. (2011). Influence of sintering temperature on the properties of porous ceramic support prepared by uniaxial dry compaction method using low-cost raw materials for membrane applications. Separation Science and Technology, 46(8), 1241–1249. https://doi.org/10.1080/01496395.2011.556097

Xi, Y., Mallavarapu, M., & Naidu, R. (2010) Preparation, characterization of surfactants modified Clay minerals and nitrate adsorption. Applied Clay Science, 48, 92-96. https://doi.org/10.1016/j.clay.2009.11.047

Yang G. C. C., & Tsai C. M. (2008). Effects of starch addition on characteristics of tubular porous ceramic membranes substrates. Desalination, 233, 129-136. https://doi.org/10.1016/j.desal.2007.09.035

Zhu, Y., Wang, D., Jiang, L., Jin, J. (2014). Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Materials (2014) 6, e101. doi:10.1038/am.2014.23

Downloads

Publicado

25/11/2021

Como Citar

ARAÚJO, A. B. de F. S. .; CARMO, E. S. do .; CUNHA, R. S. S. .; SILVA, F. A. de S. .; LINS ALMEIDA BARBOSA, T.; FREIRE RODRIGUES, M. G. Remoção de óleo em batelada e fluxo contínuo utilizando argila organofílica e membrana cerâmica de baixo custo. Research, Society and Development, [S. l.], v. 10, n. 15, p. e215101522542, 2021. DOI: 10.33448/rsd-v10i15.22542. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22542. Acesso em: 8 jan. 2025.

Edição

Seção

Engenharias