Remoção de óleo em batelada e fluxo contínuo utilizando argila organofílica e membrana cerâmica de baixo custo
DOI:
https://doi.org/10.33448/rsd-v10i15.22542Palavras-chave:
Membrana de baixo custo; Membrana cerâmica; Adsorção em batelada; Águas residuais oleosas; Rejeição de óleo.Resumo
O objetivo deste trabalho foi comparar dois sistemas de tratamento de efluentes oleosos, processo em batelada e processo de separação por membrana (PSM). No processo em batelada foi utilizada uma argila organofílica e no PSM foi utilizada uma membrana cerâmica de baixo custo. Uma argila de bofe foi utilizada como matéria-prima para a preparação de argila organofílica preparada com surfactante, via método direto e caracterizada por difração de raios-X. As propriedades de sorção desta organofílica foram avaliadas para remover o óleo. A membrana cerâmica de baixo custo em forma de disco foi obtida a partir de argila de bofe natural de Boa-Vista, Paraíba, Brasil. Foi utilizado o método de compactação uniaxial a seco e sinterização a 650 ° C. A membrana foi caracterizada por DRX e permeabilidade à água e seu desempenho foi avaliado por testes de separação emulsão óleo/água de um efluente sintético, utilizando um módulo de aço inoxidável nas condições de concentração inicial da emulsão 125 mg.L-1, temperatura de 25 °C e pressão de 2,0 bar. Conclui-se que os dois processos (PSM e sistema batelada utilizando argila organofílica bofe como adsorvente) podem ser utilizados e são promissores para o tratamento de água oleosa.
Referências
Abuhasel, K., Kchaou, M., Alquraish, M., Munusamy, Y. & Jeng, Y. T. (2021). Oily Wastewater Treatment: Overview of Conventional and Modern Methods, Challenges, and Future Opportunities. Water, 3, 980. https://doi.org/10.3390/w13070980
Almeida F.A., Botelho E.C., Melo F.C.L., Campos T.M.B., & Thim G.P. (2009). Influence of cassava starch content and sintering temperature on the alumina consolidation technique. Journal of European Ceramic Society, 29, 1587-1594. https://doi.org/10.1016/j.jeurceramsoc.2008.10.006
Alzahrani, S., Mohammad, A.W. (2014). Challenges and trends in membrane technology implementation for produced water treatment: A review. Journal of Water Process Engineering, 4, 107–133. http://dx.doi.org/10.1016/j.jwpe.2014.09.007
Araújo, A. P. (2010). 80p. Síntese de membranas zeolíticas (Y/membrana cerâmica) visando sua aplicação na catálise. Dissertação (Mestrado em Engenharia
Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.
Araújo, A. P. (2014). 110p. Avaliação da influência dos parâmetros de síntese na preparação de membranas zeoliticas Y/α-alumina. Tese (Doutorado em
Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.
Araújo, A. P., & Rodrigues, M. G. F. (2012). Síntesis de una membrana zeolítica de tipo y soportada en α‐alúmina: efecto del tratamiento térmico sobre la estructura. Avances en ciencias e ingeniería, 3, 51-58.
Araújo, A.P., Brito, A. L. F., Cunha, R. S. S., & Rodrigues, M. G. F. (2014). Efeito de diferentes concentrações de sílica sobre a sintese da membrana zeolítica (Zeólita Y/α-alumina), In Anais do CITEM - IX Ibero-American Congress on Membrane Science and Technology.
Araújo, A. P., Silva, V. J., Crispim, A. C., Menezes, R. R., & Rodrigues, M. G. F. (2010). Synthesis of Zeolite Membrane (Y/α-Alumina). Materials Science Forum, 660-661, 1058-1063. http://doi.org/10.4028/www.scientific.net/MSF.660-661.1058
Barbosa A.S., Barbosa AS, & Rodrigues, M. G. F. (2019). Influence of the methodology on the formation of zeolite membranes MCM-22 for the oil/water emulsion separation. Cerâmica. 65, 531-540. http://dx.doi.org/10.1590/0366-69132019653762676
Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2019). Influence of the methodology on the formation of zeolite membranes MCM-22 for the oil/water emulsion separation. Ceramica, 65(376), 531–540. https://doi.org/10.1590/0366-69132019653762676
Barbosa, A.S. (2009). 98p. Síntese de membranas zeolíticas (MCM-22/membrana cerâmica), em escala de laboratório, utilizando o método de síntese
hidrotérmica. Dissertação (Mestrado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.
Barbosa, A.S. (2013). 107p. Preparação de membranas zeolíticas (MCM-22/α-alumina), em escala de laboratório, utilizando rubbing, dip-coating e transporte a vapor. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.
Barbosa, A.S., (2015). 158p. Preparação de membranas zeolíticas (Y/gama-alumina) utilizando diferentes métodos e sua avaliação no processo de separação
emulsão óleo/água. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.
Barbosa, A.S., Barbosa, A.S., & Rodrigues, M.G.F. (2018). Contaminants Removal in Wastewater Using Membrane Adsorbents Zeolite Y/Alpha-Alumina. Materials Science Forum, 912, 12-15. http://doi.org/10.4028/www.scientific.net/MSF.912.12
Barbosa, A.S., Barbosa, A.S., & Rodrigues, M.G.F. (2019). Y-Type Zeolite Membranes: Synthesis by Secondary by Method and Application in Treatment of Oily Effluents. Materials Science Forum, 958, 23-28. https://doi.org/10.4028/www.scientific.net/MSF.958.23
Barbosa, A.S., Barbosa, A.S., & Rodrigues, M.G.F. (2021). Study of the influence of the aluminum source (acetate or sulfate) on the synthesis of the ceramic membrane and applications of emulsion oil water: use and reuse. Research, Society and Development, 10, e75101321023.
Barbosa, A.S., Barbosa, A.S., & Rodrigues, M. G. F. (2015). Synthesis of MCM-22 zeolite membrane on a porous alumina support. Materials Science Forum, 805, 272–278. https://doi.org/10.4028/www.scientific.net/MSF.805.272
Barbosa, A.S., Barbosa, A.S., Barbosa, T. L. A., & Rodrigues, M. G. F. (2018). Synthesis of zeolite membrane (NaY/alumina): Effect of precursor of ceramic support and its application in the process of oil–water separation. Separation and Purification Technology, 200, 141–154. https://doi.org/10.1016/j.seppur.2018.02.001
Barbosa, A.S., Barbosa, A.S., & Rodrigues, M. G. F. (2015). Synthesis of zeolite membrane (MCM-22/α-alumina) and its application in the process of oil-water separation. Desalination and Water Treatment, 56(13), 3665–3672. https://doi.org/10.1080/19443994.2014.995719
Barbosa, T. L. A., Silva, F. M. N., Barbosa, A. S., Lima, E. G., & Rodrigues, M. G. F., (2020). Synthesis and application of a composite NaA zeolite/gamma-alumina membrane for oil-water separation process. Cerâmica, 66, 137–144.
Barredo-Damas S., Alcaina-Miranda M.I., Bes-Piá A., Iborra-Clar M.I., IborraClar A., & Mendoza-Roca J.A. (2010). Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination, 250, 623-628. https://doi.org/10.1016/j.desal.2009.09.037
Bergaya, F., Theng, B.K.G, & Lagaly, G. (2006). Handbook of Clay Science.
Burggraaf, A.J., Cot, L. (1996). Fundamentals of inorganic membrane science and technology.
Chandradass J., Ki H.K., Dong Sik B., Prasad K., Balachandar G., Athisaya Divya S., et al. (2009). Starch consolidation of alumina: Fabrication and mechanical properties. Journal of the European Ceramic Society, 29, 2219-2224. https://doi.org/10.1016/j.jeurceramsoc.2009.02.001
Cot, L., Ayral, A., Durand, J., Guizard, C., Hovnanian, N., Julbe, A., Larbot, A. (2000). Inorganic membranes and solid state sciences. Solid State Sciences, 2, 313-334. https://doi.org/10.1016/S1293-2558(00)00141-2
Cunha, R. S. S. (2017). 149p. Preparação e caracterização de membranas compósitas tubulares aplicadas a separação emulsão óleo/água. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.
Ebrahimi, M., Kerker, S., Schmitz, O., Schmidt, A.A., & Czermak, P. (2017). Evaluation of the Fouling Potential of Ceramic Membrane Configurations Designed for the Treatment of Oilfield Produced Water. Separation Science and Technology, 53, 349-363. https://doi.org/10.1080/01496395.2017.1386217
Ferrage, E. (2016). Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perpectives. Clays and Clay Minerals, 64, 346-71. http://doi.org/10.1346/CCMN.2016.0640401
Ghouil, B., Harabi, A., Bouzerara, F., Brihi, N. (2016). Elaboration and characterization of ceramic membrane supports from raw materials used in microfiltration, Desalination and Water Treatment, 57, 5241-5245. https://doi: 10.1080/19443994.2015.1021098
Gupta, R. K., Dunderdale, G. J., England, M. W. & Hozumi, A. (2017). Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry, 5, 16025-16058.
Hazlett, R.N. (1969). Fibrous bed coalescence of water-steps in coalescence process. Industrial & Engineering Chemistry Fundamentals, 8, 625–632.
He, Z., Lyu, Z., Gu, Q., Zhang, L., Wang, J. (2019). Ceramic-based membranes for water and wastewater treatment. Colloids and Surfaces A Physicochemical and Engineering Aspects, 578, 123513. https://doi.org/10.1016/j.colsurfa.2019.05.074
Hsieh H.P. (1996). Inorganic membranes for separation and reaction.
Kaur H., Bulasara V.K., Gupta R.K. (2016). Preparation of kaolin-based low-cost porous ceramic supports using different amounts of carbonates. Desalination and Water Treatment, 57, 15154-15163. https://doi.org/10.1080/19443994.2015.1068226
Kaur H., Kumar V., Raj B., Gupta K. (2016). Effect of carbonates composition on the permeation characteristics of low-cost ceramic membrane supports. Journal of Industrial and Engineering Chemistry, 44, 185-194. https://doi.org/10.1016/j.jiec.2016.08.026
Le, T.V., Imai, T., Higuchi, T., Yamamoto, K., Sekine, M., Doi, R., Vo, H.T., Wei, J. (2013). Performance of tiny microbubbles enhanced with
“normal cyclone bubbles” in separation of fine oil-in-water emulsions. Chemical Engineering Science, 94, 1–6. https://doi.org/10.1016/j.ces.2013.02.044
Lorente-Ayza M.-M., Sánchez E., Sanz V., & Mestre S. (2015). Influence of starch content on the properties of low-cost microfiltration ceramic membranes. Ceramics International, 41, 13064-13073. https://doi.org/10.1016/j.ceramint.2015.07.092
Matsuno, A., Junaid, Z. M., Saito, T., Thi, H., Dang, T., Huyen, P. T., Nga, T. T. V. & Kawamoto, K. (2021). Oil/Water separation techniques using
hydrophobized/oleophilized grains: a review of recent studies. International Journal of GEOMATE, 20, 28-34.
Mercurio, M., Sarkar, B., & Langella, A. (2018). Modified Clay and Zeolite Nanocomposite Materials. Environmental and Pharmaceutical Applications.
Mestre, S., Gozalbo, A., Lorente-Ayza, M. M., & Sánchez, E. (2019). Low-cost ceramic membranes: A research opportunity for industrial application, Journal of the European Ceramic Society, 39, 3392-3407. https://doi.org/10.1016/j.jeurceramsoc.2019.03.054
Monash, V., & Pugazhenthi, G. (2011). Development of Ceramic Supports Derived from Low-Cost Raw Materials Membrane Applications and its Optimization Based on Sintering Temperature. International Journal of Applied Ceramic Technology, 8, 227-238. https://doi.org/10.1111/j.1744-7402.2009.02443.x
Mota M. F., Silva J. A., Queiroz M. B., Laborde H. M., & Rodrigues M. G. F. (2011). Organophilic clay for oil/water separation process by finite bath tests. Brazilian Journal of Petroleum and Gas, 5, 97-107. http://doi.org/10.5419/bjpg2011-0011.
Mota, J. D. (2017). 145p. Preparação de membranas tubulares compósitas e sua avaliação na separação de emulsão óleo/água: utilização e reutilização. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.
Mota, Mariaugusta Ferreira, Machado, F., & Rodrigues, M. G. F. (2012). Influence of exchanged surfactant on the structure and adsorption properties of brazilian green mud clay. Materials Science Forum, 727–728, 1473–1478. https://doi.org/10.4028/www.scientific.net/MSF.727-728.1473
Nandi, B.K., Uppaluri, R., & Purkait, M. K. (2008). Preparation and characterization of low cost ceramic membranes for micro-filtration applications, Applied Clay Science, 42, 102-110. https://doi.org/10.1016/j.clay.2007.12.001
Oliveira, G.C., Mota M.F., Silva, M.M., Rodrigues, M.G.F., & Laborde, H.M. (2012). Performance of natural sodium Clay treated with ammonium salt in the separation of emulsified oil in water. Brazilian Journal of Petroleum and Gas, 6, 171-183. http://doi.org/10.5419/bjpg2012-0014.
Padaki, M., Surya Murali, R., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassima, M. A., Hilal, N., Ismail, A. F. (2015). Membrane technology enhancement in oil–water separation. A review. Desalination, 357, 2015, 197-207.
Pereira, K. R. O., Hanna, R. A., Ramos Vianna, M. M. G., Pinto, C. A., Rodrigues, M. G. F., & Valenzuela-Diaz, F. R. (2005). Brazilian organoclays as nanostructured sorbents of petroleum-derived hydrocarbons. Materials Research, 8(1), 77–80. https://doi.org/10.1590/s1516-14392005000100014
Queiroz, M. B. (2010). 92p. Síntese de zeólita ZSM-5 e membranas zeolíticas (ZSM-5/α-alumina) através do método hidrotérmico. Dissertação (Mestrado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.
Rezende, M. J., & Pinto A. C. (2016). Esterification of fatty acids using acidactivated Brazilian smectite natural clay as a catalyst. Renewable Energy, 92, 171-7. http://doi.org/10.1016/j.renene.2016.02.004
Rodrigues M. G. F. (2003). Physical and catalytic characterization of smectites from Boa-Vista, Paraíba, Brazil. Cerâmica, 49, 146-150. https://doi.org/10.1590/S0366-69132003000300007
Rodrigues, S. C. G., Queiroz, M.B., Pereira, K.R.O., Rodrigues, M.G.F., & Valenzuela-Diaz, F.R. (2010) Comparative Study of Organophilic Clays to be Used in the Gas & Petrol Industry. Materials Science Forum, 660, 1037-1042.
Santos, E. R. F., 2014. 127p. Síntese das membranas inorgânicas (ZSM-5/gama-alumina, MCM-41/gama-alumina e compósito MFI-MCM-41/gama-alumina) destinadas separação emulsão óleo/água. Dissertação (Mestrado em Engenharia Química), Universidade Federal de Campina Grande. Campina Grande, Paraíba.
Santos, E. R. F., Mota, M. F., Sousa, A. K. F., Silva, M. M., Rodrigues, M. G. F., & Lau, L. Y. (2014). Influência do tipo de semente na síntese da membrana zeolítica ZSM-5/α-alumina, In Anais do CITEM - IX Ibero-American Congress on Membrane Science and Technology.
Santos, E. R. F., Silva, F. M. N., Barbosa, T. L. A., & Rodrigues, M. G. F., (2015). Synthesis and characterization of zeolite membrane Composite MFI/MCM-41, In Anais do 12 International Conference on Catalysis in Membrane Reactors ICCMR12.
Santos, E. R. F., Silva, M. M., Rodrigues, M. G. F., & Lau, L. Y. (2014). Study of two methods in the preparation of zeolite membrane (ZSM-5/alfa-alumina): Rubbing and dip-coating, In Anais do CITEM - IX Ibero-American Congress on Membrane Science and Technology.
Scheibler, J. R., Santos, E. R. F., Barbosa, A. S., & Rodrigues, M. G. F. (2015). Performance of zeolite membrane (ZSM-5/γ-Alumina) in the oil/water separation process. Desalination and Water Treatment, 56(13), 3561–3567. https://doi.org/10.1080/19443994.2014.986536
Scheibler, J. R. (2015). Síntese de membranas zeolíticas (ZSM-5/g-alumina, ZSM-5/a-alumina) por pore-plugging para permeação de N2. Dissertação
(Mestrado em Engenharia Química), Universidade Federal de Campina Grande. Campina Grande, Paraíba.
Silva, E. L., Patrício, A. C. L., Oliveira, G. C., & Rodrigues, M. G. F. (2014) Evaluation of a Sodic Organoclay as Adsorbent for Removing Oil/Water in a Synthetic Wastewater. Materials Science Forum, 798-799: 127-132. http://doi/10.4028/www.scientific.net/MSF.798-799.127
Silva, F. M. N. (2017). 184p. Síntese de membranas zeolíticas (Mordenita/α-alumina) utilizando os métodos de síntese hidrotérmica, dip-coating e transporte em fase vapor e avaliação na separação emulsão óleo/água. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande, Paraíba.
Silva, F. M. N., Barbosa, T. L. A., & Rodrigues, M. G. F. (2015). Synthesis and characterization of zeolite membrane MOR dip coating method. In 12 th Internacional Conference on Catalysis in Membrane Reactors.
Silva, F.M.N., Bezerra Junior, A. C., Barbosa, T. L. A., & Rodrigues, M. G. F. (2015). Single gas permeation in ZSM-5 zeolite membrane. In Euromembrane.
Silva, F. M. N., Lima, E. G., Barbosa, T. L. A., & Rodrigues, M.G.F. (2017). Development of MOR Zeolite Membranes Supported nn ɣ-alumina and α-alumina obtained from the decomposition of aluminum sulphate. In 13th Internacional Conference on Catalysis in Membrane Reactors.
Silva, F. M. N.; & Rodrigues, M. G. F. (2015). Preparation and characterization of mordenite inorganic membrane for gas separation. In: Euromembrane.
Silva, L. R. B., Barbosa, T. L. A., & Rodrigues, M. G. F. (2021). Membrana zeolítica NaA : Preparação e aplicação para tratamento de emulsão óleo/água. In Anais do IV CONEPETRO E VI WEPETRO.
Silva, L. R. B., Silva, F. A. S., Barbosa, T.L.A., & Rodrigues, M.G.F. (2021). Membrana cerâmica de baixo custo para tratamento de efluentes oleosos. Research, Society and Development, 10, e253101321071.
Souza Santos, P. (1989). Ciências e Tecnologia de Argilas.
Standard Methods of Testing Sorbent Performance of Adsorbents – Designation: ASTM F726 –99.
Standard Methods of Testing Sorbent Performance of Adsorbents – Designation: ASTM F716 –82 (Reapproved 1993).
Standard Test Methods for Apparent Porosity, Water absorption, Apparent Specific Gravity, and Bulky Density of Burned Refractory Brick and Shapes by Boiling Water – Designation: ASTM C 20 (2000).
Sutherl, K. Filters and Filtration Handbook, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2008.
Tummons, E., Han, Q., Tanudjaja, H. J., Hejase, C. A., Chew, J. W., Tarabara, V. V. (2020). Membrane fouling by emulsified oil: A review. Separation and Purification Technology, 248, 116919. https://doi.org/10.1016/j.seppur.2020.116919
Vasanth, D., Uppaluri, R., & Pugazhenthi, G. (2011). Influence of sintering temperature on the properties of porous ceramic support prepared by uniaxial dry compaction method using low-cost raw materials for membrane applications. Separation Science and Technology, 46(8), 1241–1249. https://doi.org/10.1080/01496395.2011.556097
Xi, Y., Mallavarapu, M., & Naidu, R. (2010) Preparation, characterization of surfactants modified Clay minerals and nitrate adsorption. Applied Clay Science, 48, 92-96. https://doi.org/10.1016/j.clay.2009.11.047
Yang G. C. C., & Tsai C. M. (2008). Effects of starch addition on characteristics of tubular porous ceramic membranes substrates. Desalination, 233, 129-136. https://doi.org/10.1016/j.desal.2007.09.035
Zhu, Y., Wang, D., Jiang, L., Jin, J. (2014). Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Materials (2014) 6, e101. doi:10.1038/am.2014.23
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Ana Beatriz de França Silva Araújo; Edilânia Silva do Carmo; Rochelia Silva Souza Cunha; Francisco Alex de Sousa Silva; Tellys Lins Almeida Barbosa; Meiry Gláucia Freire Rodrigues
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.