Potencial energético dos resíduos do processamento de café combinados com finos de carvão vegetal

Autores

DOI:

https://doi.org/10.33448/rsd-v10i15.23012

Palavras-chave:

Resíduo agrícola; Biomassa lignocelulósica; Biocombustíveis.

Resumo

O objetivo do presente trabalho foi avaliar a composição e a qualidade dos resíduos do processamento de café e suas misturas com finos do carvão vegetal para fins energéticos. A biomassa do café, os finos de carvão vegetal e as misturas (10, 20 e 30% de finos de carvão vegetal) foram caracterizados quanto à umidade, composição química imediata e elementar, poder calorífico superior e líquido, e densidade a granel e energética. A inclusão de finos de carvão vegetal promoveu a redução significativa da umidade da biomassa lignocelulósica de café, assim como, o aumento das propriedades energéticas. O tratamento com 30% de finos de carvão vegetal apresentou a melhor qualidade, atingindo um poder calorífico superior de 19,44 MJ.Kg-1 e poder calorífico líquido de 16,75 MJ.Kg-1, ou seja, um aumento energético de 6 e 10 %, respectivamente, em relação ao tratamento com 100% de biomassa residual de café. As características físico-químicas tanto dos resíduos gerados durante o processamento do café quanto dos finos de carvão apresentam boas propriedades energéticas, que as transformam em um excelente material para utilização no desenvolvimento de biocombustíveis. Portanto, recomenda-se a mistura de pelo menos 20% de finos de carvão vegetal para potencializar o desempenho energético de resíduos oriundos da produção de café.

Referências

Angeloni, G., Guerrini, L., Masella, P., Innocenti, M., Bellumori, M., & Parenti, A. (2019). Characterization and comparison of cold brew and cold drip coffee extraction methods. Journal of the Science of Food and Agriculture, 99(1), 391–399. https://doi.org/10.1002/jsfa.9200

AMERICAN SOCIETY FOR TESTING MATERIALS. (2004). ASTM E711-87 : Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter. Philadelphia: ASTM International, 8p.

AMERICAN SOCIETY FOR TESTING MATERIALS. (2007). ASTM D 1762- 84 : Standard method for chemical analyses of wood charcoal. Philadelphia: ASTM International, 2p.

Anwar, Z., Gulfraz, M., & Irshad, M. (2014). Agro-Industrial Lignocellulosic Biomass a Key to Unlock the Future Bio-Energy: A Brief Review.” Journal of Radiation Research and Applied Sciences, 7(2): 163–73. http://dx.doi.org/10.1016/j.jrras.2014.02.003.

Awan, F. U. R., Keshavarz, A., Akhondzadeh, H., et al. (2020). Stable Dispersion of Coal Fines during Hydraulic Fracturing Flowback in Coal Seam Gas Reservoirs-An Experimental Study. Energy & Fuels, 34(5), 5566–5577. http://dx.doi.org/10.1021/acs.energyfuels.0c00045

Bajpai, P. (2016). Structure of Lignocellulosic Biomass. 7–12. https://doi.org/10.1007/978-981-10-0687-6_2

Correia, L. A. da S., Silva, J. E. da, Calixto, G. Q., Melo, D. M. de A., & Braga, R. M. (2022). Pachira aquatica fruits shells valorization: Renewables phenolics through analytical pyrolysis study (Py-GC/MS). Ciência Rural, 52(2), e20210068. https://doi.org/10.1590/0103-8478cr20210068

Costa, S. E. de L., Santos, R. C. dos, Castro, R. V. O., Castro, A. F. N. M., Magalhães, M. A. de, Carneiro, A. de C. O., Santos, C. P. de S., Gomes, I. R. F., & Rocha, S. M. G. (2019). Briquettes quality produced with the macauba epicarp (Acrocomia aculeata) and Pinus sp. wood. Revista Árvore, 43(5), e430501. https://doi.org/10.1590/1806-90882019000500001

Cubero-Abarca, R., Moya, R., Valaret, J., & Tomazello Filho, M. (2014). Use of coffee (Coffea arabica) pulp for the production of briquettes and pellets for heat generation. Ciência e Agrotecnologia, 38(5), 461–470. https://doi.org/10.1590/s1413-70542014000500005

DEUTSCHES INSTITUT FÜR NORMUNG. (2010). DIN EN 14774-1 : Determination of moisture content – Oven dry method – Part 1: Total moisture – Reference method. Berlin: CEN, 10 p. 14774

Demirbas, A. (2002). Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Exploration & Exploitation, 20(1):105-111. https://doi.org/10.1260/014459802760170420

Dias Júnior, A.F., Suuchi, M.A., Sant’Anna Neto, A. et al. (2021). Blends of charcoal fines and wood improve the combustibility and quality of the solid biofuels. Bioenerg. Res. 14, 344–354. https://doi.org/10.1007/s12155-020-10179-8

Faria, W., De, T., Protásio, T., Trugilho, P., Luísa, B., Pereira, C., Carneiro, A., Carneiro, O., Andrade, C., Benedito, J., & Junior, G. (2016). Transformação dos resíduos lignocelulósicos da cafeiculTura em Pellets para geração de energia Térmica. Coffee Science, 11, 137–147.

Ferreira, D. F. (2019). A computer analysis system to fixed effects split plot type designs. Rev. Bras. Biometria, 37, 529–535. https://doi.org/10.28951/rbb.

v37i4.450.

Jeguirim, M., Limousy, L., & Fossard, E. (2016). Characterization of coffee residues pellets and their performance in a residential combustor. International Journal of Green Energy, 13(6), 608–615. https://doi.org/10.1080/15435075.2014.888664

Loureiro, B. A., Assis, M. R., Melo, I. C. N. A., Oliveira, A. F. C. F., & Trugilho, P. F. (2021). Rendimento gravimétrico da carbonização e caracterização qualitativa do carvão vegetal em clones de híbridos de Corymbia spp para uso industrial. Ciência Florestal, 31(1), 214–232. https://doi.org/10.5902/1980509836120

Nosek, R., Tun, M. M., & Juchelkova, D. (2020). Energy utilization of spent coffee grounds in the form of pellets. Energies, 13(5), 1–8. https://doi.org/10.3390/en13051235

Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 12(5), 2145–2169. https://doi.org/10.1007/s12649-020-01123-0

Pinto, C. W., Barth, G., Molin, R., Silva, D. A. D., & Pauletti, V. (2021). Characterization of oat biomass for energy production. Revista Caatinga, 34(3), 537–547. https://doi.org/10.1590/1983-21252021v34n305rc

Protásio, T. de P., Alves, I. C. N., Trugilho, P. F., Silva, V. O., & Baliza, A. E. R. (2011). Compactação de biomassa vegetal visando à produção de biocombustíveis sólidos. Pesquisa Florestal Brasileira, 31(68), 273–283. https://doi.org/10.4336/2011.pfb.31.68.273

Protásio, T. de P., Bufalino, L., Mendes, R. F., Ribeiro, M. X., Trugilho, P. F., & Leite, E. R. da S. (2012). Torrefação e carbonização de briquetes de resíduos do processamento dos grãos de café. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(11), 1252–1258. https://doi.org/10.1590/S1415-43662012001100015

Rana, R., Nanda, S., Kozinski, J. A., & Dalai, A. K. (2018). Investigating the applicability of Athabasca bitumen as a feedstock for hydrogen production through catalytic supercritical water gasification. Journal of Environmental Chemical Engineering, 6(1), 182–189. https://doi.org/10.1016/j.jece.2017.11.036

Setter, C., Borges, F. A., Cardoso, C. R., Mendes, R. F., & Oliveira, T. J. P. (2020). Energy quality of pellets produced from coffee residue: Characterization of the products obtained via slow pyrolysis. Industrial Crops and Products, 154, 112731. https://doi.org/10.1016/j.indcrop.2020.112731

Shan, F., Lin, Q., Zhou, K., Wu, Y., Fu, W., Zhang, P., Song, L., Shao, C., & Yi, B. (2017). An experimental study of ignition and combustion of single biomass pellets in air and oxy-fuel. Fuel, 188, 277–284. https://doi.org/10.1016/j.fuel.2016.09.069

Solarte-Toro, J. C., Chacón-Pérez, Y., & Cardona-Alzate, C. A. (2018). Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electronic Journal of Biotechnology, 33, 52–62. https://doi.org/10.1016/j.ejbt.2018.03.005

Souza, H. J. P. L., Arantes, M. D. C., Vidaurre, G. B., Andrade, C. R., Carneiro, A. de C. O., de Souza, D. P. L., & Protásio, T. de P. (2020). Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production. Renewable Energy, 149, 128–140. https://doi.org/10.1016/j.renene.2019.12.015

Tawalbeh, M., Al-Othman, A., Salamah, T., Alkasrawi, M., Martis, R., & El-Rub, Z. A. (2021). A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials. Journal of Environmental Management, 299, 113597. https://doi.org/10.1016/j.jenvman.2021.113597

Tian, S. Q., Zhao, R. Y., & Chen, Z. C. (2018). Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renewable and Sustainable Energy Reviews, 91, 483–489. https://doi.org/10.1016/j.rser.2018.03.113

Downloads

Publicado

20/11/2021

Como Citar

RESENDE, D. R.; ARAUJO, E. da S.; LORENÇO, M. S. .; ZIDANES, U. L. .; BIANCHI, M. L. .; TRUGILHO, P. F. .; MORI, F. A. . Potencial energético dos resíduos do processamento de café combinados com finos de carvão vegetal. Research, Society and Development, [S. l.], v. 10, n. 15, p. e326101523012, 2021. DOI: 10.33448/rsd-v10i15.23012. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23012. Acesso em: 5 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas