Artigo de revisão: Propriedades biológicas das proteínas e peptídeos do soro do leite caprino
DOI:
https://doi.org/10.33448/rsd-v11i1.24340Palavras-chave:
Proteínas do soro; Componentes funcionais caprinos; Peptídeos bioativos.Resumo
O leite caprino é utilizado há décadas em substituição aos demais leites por estar associado a melhor digestibilidade, menor alergenicidade e potenciais benefícios à saúde do consumidor. A indústria láctea ocasionalmente descarta subprodutos como o soro do leite de cabra, um líquido amarelado, que pode ser obtido pela fabricação de queijos ou pela precipitação ácida das caseínas. O soro é a fração solúvel do leite que contém diversos componentes remanescentes notoriamente interessantes, como as proteínas, presentes na forma de um pool proteico, que tem potencial de apresentar diferentes atividades biológicas, bem como, propriedades tecnológicas de grande interesse. A hidrólise das proteínas do soro do leite caprino demonstra ser um processamento eficaz para obtenção de moléculas bioativas que devido a sua funcionalidade tem grande potencial para serem microencapsuladas. Assim essa revisão da literatura de maneira geral compila apenas estudos envolvendo o leite caprino, e faz um apanhado a respeito da composição do leite caprino e o desenvolvimento da caprinocultura leiteira. Bem como busca enfatizar as proteínas e peptídeos do soro do leite caprino e as bioatividades a quais estas são relacionadas, de maneira a gerar um maior entendimento sobre suas características tecnológicas, atividades biológicas e funcionais possibilitando reunir conhecimentos de uma fonte proteica com diversos benefícios a saúde que geralmente é descartada, e pode ser melhor aproveitado pela indústria, proporcionando geração de renda para aqueles que sobrevivem desta atividade agropecuária.
Referências
Adeyeye, S. A. O. (2016). Fungal mycotoxins in foods: A review. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1213127
Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98, 244–256. https://doi.org/10.1016/j.fbp.2016.02.003
Al-Saadi, J. S., Shaker, K. A., & Ustunol, Z. (2014). Effect of heat and transglutaminase on solubility of goat milk protein-based films. International Journal of Dairy Technology, 67(3), 420–426. https://doi.org/10.1111/1471-0307.12138
Almaas, H., Eriksen, E., Sekse, C., Comi, I., Flengsrud, R., Holm, H., Jensen, E., Jacobsen, M., Langsrud, T., & Vegarud, G. E. (2011). Antibacterial peptides derived from caprine whey proteins, by digestion with human gastrointestinal juice. British Journal of Nutrition, 106(6), 896–905. https://doi.org/10.1017/S0007114511001085
Alves, C. Q., David, J. M., David, J. P., Bahia, M. V., & Aguiar, R. M. (2010). Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Química Nova, 33(10), 2202–2210. https://doi.org/10.1590/S0100-40422010001000033
Amalfitano, N., Stocco, G., Maurmayr, A., Pegolo, S., Cecchinato, A., & Bittante, G. (2020). Quantitative and qualitative detailed milk protein profiles of 6 cattle breeds: Sources of variation and contribution of protein genetic variants. Journal of Dairy Science, 103(12), 11190–11208. https://doi.org/10.3168/jds.2020-18497
Amigo, L., & Fontecha, J. (2011). Milk | Goat Milk. In Encyclopedia of Dairy Sciences (pp. 484–493). Elsevier. https://doi.org/10.1016/B978-0-12-374407-4.00313-7
Araújo, D. F. S., Guerra, G. C. B., Pintado, M. M. E., Sousa, Y. R. F., Algieri, F., Rodriguez-Nogales, A., Araújo, R. F., Gálvez, J., Queiroga, R. de C. R. E., & Rodriguez-Cabezas, M. E. (2017). Intestinal anti-inflammatory effects of goat whey on DNBS-induced colitis in mice. PLOS ONE, 12(9), e0185382. https://doi.org/10.1371/journal.pone.0185382
Aslam, H., Marx, W., Rocks, T., Loughman, A., Chandrasekaran, V., Ruusunen, A., Dawson, S. L., West, M., Mullarkey, E., Pasco, J. A., & Jacka, F. N. (2020). The effects of dairy and dairy derivatives on the gut microbiota: a systematic literature review. Gut Microbes, 12(1), 1799533. https://doi.org/10.1080/19490976.2020.1799533
Assis, P. O. A. de, Guerra, G. C. B., Araújo, D. F. de S., Araújo Júnior, R. F. de, Machado, T. A. D. G., Araújo, A. A. de, Lima, T. A. S. de, Garcia, H. E. M., & Queiroga, R. de C. R. do E. (2016). Intestinal anti-inflammatory activity of goat milk and goat yoghurt in the acetic acid model of rat colitis. International Dairy Journal, 56, 45–54. https://doi.org/10.1016/j.idairyj.2015.11.002
Attaallah, W., Yılmaz, A. M., Erdoğan, N., Yalçın, A. S., & Aktan, A. Ö. (2012). Whey protein versus whey protein hydrolyzate for the protection of azoxymethane and dextran sodium sulfate induced colonic tumors in rats. Pathology and Oncology Research, 18(4), 817–822. https://doi.org/10.1007/s12253-012-9509-9
Azizkhani, M., Saris, P. E. J., & Baniasadi, M. (2021). An in-vitro assessment of antifungal and antibacterial activity of cow, camel, ewe, and goat milk kefir and probiotic yogurt. Journal of Food Measurement and Characterization, 15(1), 406–415. https://doi.org/10.1007/s11694-020-00645-4
Ballard, K. D., Bruno, R. S., Seip, R. L., Quann, E. E., Volk, B. M., Freidenreich, D. J., Kawiecki, D. M., Kupchak, B. R., Chung, M.-Y., Kraemer, W. J., & Volek, J. S. (2009). Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial. Nutrition Journal, 8(1), 34. https://doi.org/10.1186/1475-2891-8-34
Batista, M. A., Campos, N. C. A., & Silvestre, M. P. C. (2018). Whey and protein derivatives: Applications in food products development, technological properties and functional effects on child health. Cogent Food & Agriculture, 4(1), 1509687. https://doi.org/10.1080/23311932.2018.1509687
Bolacali, M., & Küçük, M. (2012). Fertility and Milk Production Characteristics of Saanen Goats Raised in Muş Region. Kafkas Universitesi Veteriner Fakultesi Dergisi. https://doi.org/10.9775/kvfd.2011.4895
Brandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161. https://doi.org/10.1016/j.foodres.2015.01.016
Brans, G., Schroën, C. G. P. H., Van Der Sman, R. G. M., & Boom, R. M. (2004). Membrane fractionation of milk: State of the art and challenges. Journal of Membrane Science, 243(1–2), 263–272. https://doi.org/10.1016/j.memsci.2004.06.029
BRASIL. Ministério da Agricultura, P. e A. (2000). Instrução Normativa no37 de 31 de outubro de 2000. Aprova o Regulamento Técnico de Identidade e Qualidade de Leite de Cabra. Diário Oficial (da República Federativa do Brasil).
Bui-Klimke, T. R., & Wu, F. (2015). Ochratoxin A and Human Health Risk: A Review of the Evidence. Critical Reviews in Food Science and Nutrition, 55(13), 1860–1869. https://doi.org/10.1080/10408398.2012.724480
Çakır, B., Okuyan, B., Şener, G., & Tunali-Akbay, T. (2021). Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis. European Journal of Pharmacology, 891, 173781. https://doi.org/10.1016/j.ejphar.2020.173781
Ceballos, L. S., Morales, E. R., de la Torre Adarve, G., Castro, J. D., Martínez, L. P., & Sampelayo, M. R. S. (2009). Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis, 22(4), 322–329. https://doi.org/10.1016/j.jfca.2008.10.020
Champagne, C. P., & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18(2), 184–190. https://doi.org/10.1016/j.copbio.2007.03.001
Chauhan, S., Powar, P., & Mehra, R. (2021). A review on nutritional advantages and nutraceutical properties of cow and goat milk. International Journal of Applied Research, 7(10), 101–105. https://doi.org/10.22271/allresearch.2021.v7.i10b.9025
Clark, S., & Mora García, M. B. (2017). A 100-Year Review: Advances in goat milk research. Journal of Dairy Science, 100(12), 10026–10044. https://doi.org/10.3168/jds.2017-13287
Contreras, M. del M., Hernández-Ledesma, B., Amigo, L., Martín-Álvarez, P. J., & Recio, I. (2011). Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. LWT - Food Science and Technology, 44(1), 9–15. https://doi.org/10.1016/j.lwt.2010.06.017
Costa Paulino, B., de Souza Aquino, J., Leite de Souza, E., Alencar de Sousa Gomes, J., Paulo Lins, P., Alcoforado Sena de Lima, T., Maria dos Santos Alves, E., & do Nascimento, E. (2019). Goat Milk Whey Improves Nutritional Status, Fecal Microbial Composition and Intestinal Morphology in Female Rats Fed a Westernized Diet and Their Offspring. Journal of Food and Nutrition Research, 7(4), 291–302. https://doi.org/10.12691/jfnr-7-4-6
Costa, R. G., Freire, R. M. B., de Araújo, G. G. L., Queiroga, R. de C. R. do E., Paiva, G. N., Ribeiro, N. L., Oliveira, R. L., Domínguez, R., & Lorenzo, J. M. (2021). Effect of Increased Salt Water Intake on the Production and Composition of Dairy Goat Milk. Animals, 11(9), 2642. https://doi.org/10.3390/ani11092642
Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G., & Decroly, E. (2020). The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Research, 176, 104742. https://doi.org/10.1016/j.antiviral.2020.104742
Dalgleish, D. G. (2011). On the structural models of bovine casein micelles—review and possible improvements. Soft Matter, 7(6), 2265–2272. https://doi.org/10.1039/C0SM00806K
De Mejia, E. G., & Dia, V. P. (2010). The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer and Metastasis Reviews, 29(3), 511–528. https://doi.org/10.1007/s10555-010-9241-4
Delgadillo-Puga, C., Noriega, L. G., Morales-Romero, A. M., Nieto-Camacho, A., Granados-Portillo, O., Rodríguez-López, L. A., Alemán, G., Furuzawa-Carballeda, J., Tovar, A. R., Cisneros-Zevallos, L., & Torre-Villalvazo, I. (2020). Goat’s Milk Intake Prevents Obesity, Hepatic Steatosis and Insulin Resistance in Mice Fed A High-Fat Diet by Reducing Inflammatory Markers and Increasing Energy Expenditure and Mitochondrial Content in Skeletal Muscle. International Journal of Molecular Sciences, 21(15), 5530. https://doi.org/10.3390/ijms21155530
Demers-Mathieu, V., Gauthier, S. F., Britten, M., Fliss, I., Robitaille, G., & Jean, J. (2013). Antibacterial activity of peptides extracted from tryptic hydrolyzate of whey protein by nanofiltration. International Dairy Journal, 28(2), 94–101. https://doi.org/10.1016/j.idairyj.2012.09.003
Doherty, S. B., Auty, M. A., Stanton, C., Ross, R. P., Fitzgerald, G. F., & Brodkorb, A. (2012). Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. International Dairy Journal, 22(1), 31–43. https://doi.org/10.1016/j.idairyj.2011.06.009
Dullius, A., Goettert, M. I., & de Souza, C. F. V. (2018). Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. Journal of Functional Foods, 42, 58–74. https://doi.org/10.1016/J.JFF.2017.12.063
Esmaeilpour, M., Ehsani, M. R., Aminlari, M., Hoseini, E., & Azad, I. (2017). Аntimicrobial peptides de rived from goat’s milk whey proteins obtained by enzymatic hydrolysis. Journal of Food Biosciences and Technology, 7(1), 65–72.
Fathi, M., Martín, Á., & McClements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science & Technology, 39(1), 18–39. https://doi.org/10.1016/j.tifs.2014.06.007
Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology, 23(1), 13–27. https://doi.org/10.1016/j.tifs.2011.08.003
Furlong, S. J., Mader, J. S., & Hoskin, D. W. (2010). Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts. Experimental and Molecular Pathology, 88(3), 371–375. https://doi.org/10.1016/j.yexmp.2010.02.001
G, G., A, M., A, W., & H, K. (2016). Review on Goat Milk Composition and its Nutritive Value. Journal of Nutrition and Health Sciences, 3(4). https://doi.org/10.15744/2393-9060.3.401
Gifford, J. L., Hunter, H. N., & Vogel, H. J. (2005). Lactoferricin. Cellular and Molecular Life Sciences, 62(22), 2588–2598. https://doi.org/10.1007/s00018-005-5373-z
Giorgio, D., Di Trana, A., & Claps, S. (2018). Oligosaccharides, polyamines and sphingolipids in ruminant milk. Small Ruminant Research, 160, 23–30. https://doi.org/10.1016/j.smallrumres.2018.01.006
Gómez-Mascaraque, L. G., Miralles, B., Recio, I., & López-Rubio, A. (2016). Microencapsulation of a whey protein hydrolysate within micro-hydrogels: Impact on gastrointestinal stability and potential for functional yoghurt development. Journal of Functional Foods, 26, 290–300. https://doi.org/10.1016/j.jff.2016.08.006
Gumus, C. E., & Gharibzahedi, S. M. T. (2021). Yogurts supplemented with lipid emulsions rich in omega-3 fatty acids: New insights into the fortification, microencapsulation, quality properties, and health-promoting effects. Trends in Food Science & Technology, 110, 267–279. https://doi.org/10.1016/j.tifs.2021.02.016
Haenlein, G. F. W., & Wendorff, W. L. (2006). Sheep Milk. In Handbook of Milk of Non-Bovine Mammals (pp. 137–194). Blackwell Publishing Professional. https://doi.org/10.1002/9780470999738.ch7
Hammam, A. R. A., Salman, S. M., Elfaruk, M. S., & Alsaleem, K. A. (2021). Goat Milk: Compositional, Technological, Nutritional, and Therapeutic Aspects. https://doi.org/10.20944/PREPRINTS202108.0097.V1
Haque, E., & Chand, R. (2008). Antihypertensive and antimicrobial bioactive peptides from milk proteins. European Food Research and Technology, 227(1), 7–15. https://doi.org/10.1007/s00217-007-0689-6
Hernández-Ledesma, B., Recio, I., & Amigo, L. (2008). β-Lactoglobulin as source of bioactive peptides. Amino Acids, 35(2), 257–265. https://doi.org/10.1007/s00726-007-0585-1
Hernández-Ledesma, Blanca, Ramos, M., & Gómez-Ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey. Small Ruminant Research, 101(1–3), 196–204. https://doi.org/10.1016/j.smallrumres.2011.09.040
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
Holt, C. (2016). Casein and casein micelle structures, functions and diversity in 20 species. International Dairy Journal, 60, 2–13. https://doi.org/10.1016/j.idairyj.2016.01.004
Ianni, A., Innosa, D., Oliva, E., Bennato, F., Grotta, L., Saletti, M. A., Pomilio, F., Sergi, M., & Martino, G. (2021). Effect of olive leaves feeding on phenolic composition and lipolytic volatile profile in goat milk. Journal of Dairy Science, 104(8), 8835–8845. https://doi.org/10.3168/jds.2021-20211
IBGE. (2020). Pesquisa da Pecuária Municipal 2020.
Ibrahim, H. R., Ahmed, A. S., & Miyata, T. (2017). Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. Journal of Advanced Research, 8(1), 63–71. https://doi.org/10.1016/j.jare.2016.12.002
Izzo, L., Luz, C., Ritieni, A., Quiles Beses, J., Mañes, J., & Meca, G. (2020). Inhibitory effect of sweet whey fermented by Lactobacillus plantarum strains against fungal growth: A potential application as an antifungal agent. Journal of Food Science, 85(11), 3920–3926. https://doi.org/10.1111/1750-3841.15487
J, D.-C., F, L., M, M., MJM, A., MS, C., & I, L.-A. (2015). Influence of Goat Milk on Iron Deficiency Anemia Recovery. International Journal of Dairy Science & Processing, 7–11. https://doi.org/10.19070/2379-1578-150003
Jia, W., Zhang, R., Zhu, Z., & Shi, L. (2021). LC-Q-Orbitrap HRMS-based proteomics reveals potential nutritional function of goat whey fraction. Journal of Functional Foods, 82, 104502. https://doi.org/10.1016/j.jff.2021.104502
Jones, R. G., Ober, C. K., Hodge, P., Kratochvíl, P., Moad, G., & Vert, M. (2012). Terminology for aggregation and self-assembly in polymer science (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(2), 463–492. https://doi.org/10.1351/PAC-REC-12-03-12
Kanda, A., Nakayama, K., Fukasawa, T., Koga, J., Kanegae, M., Kawanaka, K., & Higuchi, M. (2013). Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content. British Journal of Nutrition, 110(6), 981–987. https://doi.org/10.1017/S0007114512006174
Kareb, O., & Aïder, M. (2019). Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: a Critical Review. Probiotics and Antimicrobial Proteins, 11(2), 348–369. https://doi.org/10.1007/s12602-018-9427-6
Kljajevic, N. V., Tomasevic, I. B., Miloradovic, Z. N., Nedeljkovic, A., Miocinovic, J. B., & Jovanovic, S. T. (2018). Seasonal variations of Saanen goat milk composition and the impact of climatic conditions. Journal of Food Science and Technology, 55(1), 299–303. https://doi.org/10.1007/s13197-017-2938-4
Koirala, S., Prathumpai, W., & Anal, A. K. (2021). Effect of ultrasonication pretreatment followed by enzymatic hydrolysis of caprine milk proteins and on antioxidant and angiotensin converting enzyme (ACE) inhibitory activity of peptides thus produced. International Dairy Journal, 118, 105026. https://doi.org/10.1016/j.idairyj.2021.105026
Kong, R., Yang, G., Xue, R., Liu, M., Wang, F., Hu, J., Guo, X., & Chang, S. (2020). COVID-19 Docking Server: a meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19. Bioinformatics, 36(20), 5109–5111. https://doi.org/10.1093/bioinformatics/btaa645
Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2), 177–187. https://doi.org/10.1016/j.jff.2009.01.007
Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945–960. https://doi.org/10.1016/j.idairyj.2005.10.012
Kosseva, M. R., Panesar, P. S., Kaur, G., & Kennedy, J. F. (2009). Use of immobilised biocatalysts in the processing of cheese whey. International Journal of Biological Macromolecules, 45(5), 437–447. https://doi.org/10.1016/j.ijbiomac.2009.09.005
Lacroix, I. M. E., & Li-Chan, E. C. Y. (2013). Inhibition of Dipeptidyl Peptidase (DPP)-IV and α-Glucosidase Activities by Pepsin-Treated Whey Proteins. Journal of Agricultural and Food Chemistry, 61(31), 7500–7506. https://doi.org/10.1021/jf401000s
Lacroix, I. M. E., Meng, G., Cheung, I. W. Y., & Li-Chan, E. C. Y. (2016). Do whey protein-derived peptides have dual dipeptidyl-peptidase IV and angiotensin I-converting enzyme inhibitory activities? Journal of Functional Foods, 21, 87–96. https://doi.org/10.1016/j.jff.2015.11.038
Lestari, P., & Suyata. (2019). Antibacterial activity of hydrolysate protein from Etawa goat milk hydrolysed by crude extract bromelain. IOP Conference Series: Materials Science and Engineering, 509, 012111. https://doi.org/10.1088/1757-899X/509/1/012111
Liu, Y., Cai, J., & Zhang, F. (2021). Influence of goat colostrum and mature milk on intestinal microbiota. Journal of Functional Foods, 86, 104704. https://doi.org/10.1016/j.jff.2021.104704
Lopes, F. B., Da Silva, M. C., Miyagi, E. S., Fioravanti, M. C. S., Facó, O., Guimarães, R. F., Júnior, O. A. d. C., & McManus, C. M. (2012). Spatialization of climate, physical and socioeconomic factors that affect the dairy goat production in Brazil and their impact on animal breeding decisions. Pesquisa Veterinaria Brasileira, 32(11), 1073–1081. https://doi.org/10.1590/S0100-736X2012001100001
López-Rubio, A., & Lagaron, J. M. (2012). Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Science & Emerging Technologies, 13, 200–206. https://doi.org/10.1016/j.ifset.2011.10.012
Luz, C., Izzo, L., Ritieni, A., Mañes, J., & Meca, G. (2020). Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp: An application as biopreservation agent in pita bread. LWT, 118, 108717. https://doi.org/10.1016/j.lwt.2019.108717
Lynch, S. V., & Pedersen, O. (2016). The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 375(24), 2369–2379. https://doi.org/10.1056/NEJMra1600266
Ma, J.-J., Mao, X.-Y., Wang, Q., Yang, S., Zhang, D., Chen, S.-W., & Li, Y.-H. (2014). Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. LWT - Food Science and Technology, 56(2), 296–302. https://doi.org/10.1016/j.lwt.2013.12.019
Ma, Z., Zhang, F., Ma, H., Chen, X., Yang, J., Yang, Y., Yang, X., Tian, X., Yu, Q., Ma, Z., & Zhou, X. (2021). Effects of different types and doses of whey protein on the physiological and intestinal flora in D-galactose induced aging mice. PLOS ONE, 16(4), e0248329. https://doi.org/10.1371/journal.pone.0248329
Mangano, K. M., Bao, Y., & Zhao, C. (2019). Nutritional Properties of Whey Proteins. In Whey Protein Production, Chemistry, Functionality, and Applications. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119256052.ch5
Mann, B., Athira, S., Sharma, R., Kumar, R., & Sarkar, P. (2019). Bioactive Peptides from Whey Proteins. In Whey Proteins (pp. 519–547). Elsevier. https://doi.org/10.1016/B978-0-12-812124-5.00015-1
Mavrommatis, A., & Tsiplakou, E. (2020). The impact of the dietary supplementation level with Schizochytrium sp. on milk chemical composition and fatty acid profile, of both blood plasma and milk of goats. Small Ruminant Research, 193, 106252. https://doi.org/10.1016/j.smallrumres.2020.106252
Medeiros, G. K. V. V., Queiroga, R. C. R. E., Costa, W. K. A., Gadelha, C. A. A., e Lacerda, R. R., Lacerda, J. T. J. G., Pinto, L. S., Braganhol, E., Teixeira, F. C., Paula, P. P., Campos, M. I. F., Gonçalves, G. F., Pessôa, H. L. F., & Gadelha, T. S. (2018). Proteomic of goat milk whey and its bacteriostatic and antitumour potential. International Journal of Biological Macromolecules, 113, 116–123. https://doi.org/10.1016/j.ijbiomac.2018.01.200
Mehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Buttar, H. S., Telessy, I. G., Awuchi, C. G., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. P. F. (2021). Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. Journal of Functional Foods, 87, 104760. https://doi.org/10.1016/j.jff.2021.104760
Mehra, R., Singh, R., Nayan, V., Buttar, H. S., Kumar, N., Kumar, S., Bhardwaj, A., Kaushik, R., & Kumar, H. (2021). Nutritional attributes of bovine colostrum components in human health and disease: A comprehensive review. Food Bioscience, 40, 100907. https://doi.org/10.1016/j.fbio.2021.100907
Meng, Y., Liang, Z., Zhang, C., Hao, S., Han, H., Du, P., Li, A., Shao, H., Li, C., & Liu, L. (2021). Ultrasonic modification of whey protein isolate: Implications for the structural and functional properties. LWT, 112272. https://doi.org/10.1016/j.lwt.2021.112272
Minj, S., & Anand, S. (2020). Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy, 1(3), 233–258. https://doi.org/10.3390/dairy1030016
Mitsiopoulou, C., Sotirakoglou, K., Labrou, N. E., & Tsiplakou, E. (2021). The effect of whole sesame seeds on milk chemical composition, fatty acid profile and antioxidant status in goats. Livestock Science, 245, 104452. https://doi.org/10.1016/j.livsci.2021.104452
Mohan, A., Udechukwu, M. C., Rajendran, S. R. C. K., & Udenigwe, C. C. (2015). Modification of peptide functionality during enzymatic hydrolysis of whey proteins. RSC Advances, 5(118), 97400–97407. https://doi.org/10.1039/C5RA15140F
Mollea, C., Marmo, L., & Bosco, F. (2013). Valorisation of Cheese Whey, a By-Product from the Dairy Industry. In Food Industry. MUZZALUPO, I. Food Industry, Itália: EditoraInTech. https://doi.org/10.5772/53159
Mollica, M. P., Trinchese, G., Cimmino, F., Penna, E., Cavaliere, G., Tudisco, R., Musco, N., Manca, C., Catapano, A., Monda, M., Bergamo, P., Banni, S., Infascelli, F., Lombardi, P., & Crispino, M. (2021). Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients, 13(4), 1111. https://doi.org/10.3390/nu13041111
Monteiro, M. G., Brisola, M. V., & Filho, J. E. R. V. (2021). TD 2660 - Diagnóstico da Cadeia Produtiva de Caprinos e Ovinos no Brasil. Texto Para Discussão, 1–31. https://doi.org/10.38116/td2660
Moreno-Montoro, M., Olalla-Herrera, M., Rufián-Henares, J. Á., Martínez, R. G., Miralles, B., Bergillos, T., Navarro-Alarcón, M., & Jauregi, P. (2017). Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: Activity and physicochemical property relationship of the peptide components. Food and Function, 8(8), 2783–2791. https://doi.org/10.1039/c7fo00666g
Naik, L., Mann, B., Bajaj, R., Sangwan, R. B., & Sharma, R. (2013). Process optimization for the production of bio-functional whey protein hydrolysates: Adopting response surface methodology. International Journal of Peptide Research and Therapeutics, 19(3), 231–237. https://doi.org/10.1007/s10989-012-9340-x
Nascimento, T. V. C., Oliveira, R. L., Menezes, D. R., de Lucena, A. R. F., Queiroz, M. A. Á., Lima, A. G. V. O., Ribeiro, R. D. X., & Bezerra, L. R. (2021). Effects of condensed tannin-amended cassava silage blend diets on feeding behavior, digestibility, nitrogen balance, milk yield and milk composition in dairy goats. Animal, 15(1), 100015. https://doi.org/10.1016/j.animal.2020.100015
O’Neill, G. J., Egan, T., Jacquier, J. C., O’Sullivan, M., & Dolores O’Riordan, E. (2014). Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides. Food Chemistry, 160, 46–52. https://doi.org/10.1016/j.foodchem.2014.03.002
Osman, A., Goda, H. A., Abdel-Hamid, M., Badran, S. M., & Otte, J. (2016). Antibacterial peptides generated by Alcalase hydrolysis of goat whey. LWT - Food Science and Technology, 65, 480–486. https://doi.org/10.1016/j.lwt.2015.08.043
Panesar, P. S., Kumari, S., & Panesar, R. (2013). Biotechnological approaches for the production of prebiotics and their potential applications. Critical Reviews in Biotechnology, 33(4), 345–364. https://doi.org/10.3109/07388551.2012.709482
Park, Young W.; Haenlein, George F. W. ; Wendorff, W. L. (2017). Handbook of Milk of Non-Bovine Mammals. In Handbook of Milk of Non-Bovine Mammals (2 nd, p. 712). Wiley-Blackwell Publishers.
Park, Y. W. (2006). Goat Milk-Chemistry and Nutrition. In Handbook of Milk of Non-Bovine Mammals (pp. 34–58). Blackwell Publishing Professional. https://doi.org/10.1002/9780470999738.ch3
Park, Y. W. (2012). Goat Milk and Human Nutrition. Proceedings of the FIRST ASIA DAIRY GOAT CONFERENCE, 1(1), 31–39.
Park, Y. W., & Haenlein, G. F. W. (2021). A2 Bovine Milk and Caprine Milk as a Means of Remedy for Milk Protein Allergy. Dairy, 2(2), 191–201. https://doi.org/10.3390/dairy2020017
Pawlos, M. (2020). LOW-LACTOSE FERMENTED GOAT MILKS WITH BIFIDOBACTERIUM ANIMALIS SSP. LACTIS BB-12. Journal of Microbiology, Biotechnology and Food Sciences, 9(4), 751–755. https://doi.org/10.15414/jmbfs.2020.9.4.751-755
Pescuma, M., Hébert, E. M., Mozzi, F., & Font de Valdez, G. (2010). Functional fermented whey-based beverage using lactic acid bacteria. International Journal of Food Microbiology, 141(1–2), 73–81. https://doi.org/10.1016/j.ijfoodmicro.2010.04.011
Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: A review. Journal of Environmental Management, 110, 48–68. https://doi.org/10.1016/j.jenvman.2012.05.018
Pulina, G., Milán, M. J., Lavín, M. P., Theodoridis, A., Morin, E., Capote, J., Thomas, D. L., Francesconi, A. H. D., & Caja, G. (2018). Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. Journal of Dairy Science, 101(8), 6715–6729. https://doi.org/10.3168/jds.2017-14015
Queiroz, E. S., Lopes Rezende, A. L., Perrone, Í. T., Francisquini, J. d’Almeida, Fernandes de Carvalho, A., Germano Alves, N. M., Cappa de Oliveira, L. F., & Stephani, R. (2021). Spray drying and characterization of lactose-free goat milk. LWT, 147, 111516. https://doi.org/10.1016/j.lwt.2021.111516
Ranadheera, C. S., Evans, C. A., Baines, S. K., Balthazar, C. F., Cruz, A. G., Esmerino, E. A., Freitas, M. Q., Pimentel, T. C., Wittwer, A. E., Naumovski, N., Graça, J. S., Sant’Ana, A. S., Ajlouni, S., & Vasiljevic, T. (2019). Probiotics in Goat Milk Products: Delivery Capacity and Ability to Improve Sensory Attributes. Comprehensive Reviews in Food Science and Food Safety, 18(4), 867–882. https://doi.org/10.1111/1541-4337.12447
Razali, M. F., Narayanan, S., Md. Hazmi, N. A., Abdul Karim Shah, N. N., Mustapa Kamal, S. M., Mohd Fauzi, N. A., & Sulaiman, A. (2021). Minimal processing for goat milk preservation: Effect of high‐pressure processing on its quality. Journal of Food Processing and Preservation, 45(7). https://doi.org/10.1111/jfpp.15590
Razzaghi, A., Naserian, A. A., Valizadeh, R., Ebrahimi, S. H., Khorrami, B., Malekkhahi, M., & Khiaosa-ard, R. (2015). Pomegranate seed pulp, pistachio hulls, and tomato pomace as replacement of wheat bran increased milk conjugated linoleic acid concentrations without adverse effects on ruminal fermentation and performance of Saanen dairy goats. Animal Feed Science and Technology, 210, 46–55. https://doi.org/10.1016/j.anifeedsci.2015.09.014
Rubak, Y. T., Nuraida, L., Iswantini, D., & Prangdimurti, E. (2021). Identification of Angiotensin-I-converting inhibitory peptides in goat milk fermented by lactic acid bacteria isolated from fermented foods and breast milk. Food Science of Animal Resources. https://doi.org/10.5851/kosfa.2021.e55
Saipriya, K., Deshwal, G. K., Singh, A. K., Kapila, S., & Sharma, H. (2021). Effect of dairy unit operations on immunoglobulins, colour, rheology and microbiological characteristics of goat milk. International Dairy Journal, 121, 105118. https://doi.org/10.1016/j.idairyj.2021.105118
Sáiz-Abajo, M.-J., González-Ferrero, C., Moreno-Ruiz, A., Romo-Hualde, A., & González-Navarro, C. J. (2013). Thermal protection of β-carotene in re-assembled casein micelles during different processing technologies applied in food industry. Food Chemistry, 138(2–3), 1581–1587. https://doi.org/10.1016/j.foodchem.2012.11.016
Salari, F., Altomonte, I., Ribeiro, N. L., Ribeiro, M. N., Bozzi, R., & Martini, M. (2016). Effects of season on the quality of Garfagnina goat milk. Italian Journal of Animal Science, 15(4), 568–575. https://doi.org/10.1080/1828051X.2016.1247658
Sarabandi, K., Sadeghi Mahoonak, A., Hamishekar, H., Ghorbani, M., & Jafari, S. M. (2018). Microencapsulation of casein hydrolysates: Physicochemical, antioxidant and microstructure properties. Journal of Food Engineering, 237, 86–95. https://doi.org/10.1016/j.jfoodeng.2018.05.036
Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949–1956. https://doi.org/10.1016/j.peptides.2010.06.020
Schulmeister, U., Hochwallner, H., Swoboda, I., Focke-Tejkl, M., Geller, B., Nystrand, M., Härlin, A., Thalhamer, J., Scheiblhofer, S., Keller, W., Niggemann, B., Quirce, S., Ebner, C., Mari, A., Pauli, G., Herz, U., Valenta, R., & Spitzauer, S. (2009). Cloning, Expression, and Mapping of Allergenic Determinants of αS1-Casein, a Major Cow’s Milk Allergen. The Journal of Immunology, 182(11), 7019–7029. https://doi.org/10.4049/jimmunol.0712366
Sgarbieri, V. C. (2004). Propriedades fisiológicas-funcionais das proteínas do soro de leite. Revista de Nutrição, 17(4), 397–409. https://doi.org/10.1590/S1415-52732004000400001
Silanikove, N., Leitner, G., Merin, U., & Prosser, C. G. (2010). Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Ruminant Research, 89(2–3), 110–124. https://doi.org/10.1016/j.smallrumres.2009.12.033
Silva, P. D. L. da, Bezerra, M. de F., Santos, K. M. O. dos, & Correia, R. T. P. (2015). Potentially probiotic ice cream from goat’s milk: Characterization and cell viability during processing, storage and simulated gastrointestinal conditions. LWT - Food Science and Technology, 62(1), 452–457. https://doi.org/10.1016/j.lwt.2014.02.055
Silva, N. N., Casanova, F., Pinto, M. da S., Carvalho, A. F. de, & Gaucheron, F. (2019). Micelas de caseína: dos monômeros à estrutura supramolecular. Brazilian Journal of Food Technology, 22. https://doi.org/10.1590/1981-6723.18518
Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Souza, M. W. S. de, Lopes Junior, C. de O., & Afonso, W. de O. (2012). Analysis of whey protein hydrolysates: peptide profile and ACE inhibitory activity. Brazilian Journal of Pharmaceutical Sciences, 48(4), 747–757. https://doi.org/10.1590/S1984-82502012000400019
Smithers, G. W. (2008). Whey and whey proteins-From “gutter-to-gold.” International Dairy Journal, 18(7), 695–704. https://doi.org/10.1016/j.idairyj.2008.03.008
Soliman, G. Z. A. (2005). Comparison Of Chemical And Mineral Content Of Milk From Human, Cow, Buffalo, Camel And Goat In Egypt. The Egyptian Journal of Hospital Medicine, 21(1), 116–130. https://doi.org/10.21608/ejhm.2005.18054
Soloshenko, K. I., Lych, I. V., Voloshyna, I. M., & Shkotova, L. V. (2020). Polyfunctional properties of goat colostrum proteins and their use. Biopolymers and Cell, 36(3), 197–209. https://doi.org/10.7124/bc.000A2B
Sousa, G. T., Lira, F. S., Rosa, J. C., de Oliveira, E. P., Oyama, L. M., Santos, R. V, & Pimentel, G. D. (2012). Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids in Health and Disease, 11(1), 67. https://doi.org/10.1186/1476-511X-11-67
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
Tajaddini, M. A., Dayani, O., Khezri, A., Tahmasbi, R., & Sharifi-Hoseini, M. M. (2021). Production efficiency, milk yield, and milk composition and fatty acids profile of lactating goats feeding formaldehyde-treated canola meal in two levels of dietary crude protein. Small
Ruminant Research, 204, 106519. https://doi.org/10.1016/j.smallrumres.2021.106519
Tavares, G. M., Croguennec, T., Carvalho, A. F., & Bouhallab, S. (2014). Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends in Food Science & Technology, 37(1), 5–20. https://doi.org/10.1016/j.tifs.2014.02.008
Tilg, H., Zmora, N., Adolph, T. E., & Elinav, E. (2020). The intestinal microbiota fuelling metabolic inflammation. Nature Reviews Immunology, 20(1), 40–54. https://doi.org/10.1038/s41577-019-0198-4
Turkmen, N. (2017). The Nutritional Value and Health Benefits of Goat Milk Components. In Nutrients in Dairy and their Implications on Health and Disease (pp. 441–449). Elsevier. https://doi.org/10.1016/B978-0-12-809762-5.00035-8
Udenigwe, C. C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science & Technology, 36(2), 137–143. https://doi.org/10.1016/j.tifs.2014.02.004
Vankadari, N., & Wilce, J. A. (2020). Emerging COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerging Microbes & Infections, 9(1), 601–604. https://doi.org/10.1080/22221751.2020.1739565
Verruck, S., Dantas, A., & Prudencio, E. S. (2019a). Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. Journal of Functional Foods, 52, 243–257. https://doi.org/10.1016/j.jff.2018.11.017
Verruck, S., Dantas, A., & Prudencio, E. S. (2019b). Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. Journal of Functional Foods, 52, 243–257. https://doi.org/10.1016/J.JFF.2018.11.017
Watkins, P. J., Jaborek, J. R., Teng, F., Day, L., Castada, H. Z., Baringer, S., & Wick, M. (2021). Branched chain fatty acids in the flavour of sheep and goat milk and meat: A review. Small Ruminant Research, 200, 106398. https://doi.org/10.1016/j.smallrumres.2021.106398
Xia, S., Lan, Q., Su, S., Wang, X., Xu, W., Liu, Z., Zhu, Y., Wang, Q., Lu, L., & Jiang, S. (2020). The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduction and Targeted Therapy, 5(1), 92. https://doi.org/10.1038/s41392-020-0184-0
Xia, Y., Yu, J., Xu, W., & Shuang, Q. (2020). Purification and characterization of angiotensin-I-converting enzyme inhibitory peptides isolated from whey proteins of milk fermented with Lactobacillus plantarum QS670. Journal of Dairy Science, 103(6), 4919–4928. https://doi.org/10.3168/jds.2019-17594
Yadav, J. S. S., Yan, S., Pilli, S., Kumar, L., Tyagi, R. D., & Surampalli, R. Y. (2015). Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances, 33(6), 756–774. https://doi.org/10.1016/j.biotechadv.2015.07.002
Zhang, Q.-X., Wu, H., Ling, Y.-F., & Lu, R.-R. (2013). Isolation and identification of antioxidant peptides derived from whey protein enzymatic hydrolysate by consecutive chromatography and Q-TOF MS. Journal of Dairy Research, 80(3), 367–373. https://doi.org/10.1017/S0022029913000320
Zhou, D.-Y., Zhu, B.-W., Qiao, L., Wu, H.-T., Li, D.-M., Yang, J.-F., & Murata, Y. (2012). In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera. Food and Bioproducts Processing, 90(2), 148–154. https://doi.org/10.1016/j.fbp.2011.02.002
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Maria Isabel Ferreira Campos; Anna Karoline de Sousa Lima; José Honório Pereira Lopes Neto; Julia Mariano Caju de Oliveira ; Tatiane Santi Gadelha
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.