Artigo de revisão: Propriedades biológicas das proteínas e peptídeos do soro do leite caprino

Autores

DOI:

https://doi.org/10.33448/rsd-v11i1.24340

Palavras-chave:

Proteínas do soro; Componentes funcionais caprinos; Peptídeos bioativos.

Resumo

O leite caprino é utilizado há décadas em substituição aos demais leites por estar associado a melhor digestibilidade, menor alergenicidade e potenciais benefícios à saúde do consumidor. A indústria láctea ocasionalmente descarta subprodutos como o soro do leite de cabra, um líquido amarelado, que pode ser obtido pela fabricação de queijos ou pela precipitação ácida das caseínas. O soro é a fração solúvel do leite que contém diversos componentes remanescentes notoriamente interessantes, como as proteínas, presentes na forma de um pool proteico, que tem potencial de apresentar diferentes atividades biológicas, bem como, propriedades tecnológicas de grande interesse. A hidrólise das proteínas do soro do leite caprino demonstra ser um processamento eficaz para obtenção de moléculas bioativas que devido a sua funcionalidade tem grande potencial para serem microencapsuladas. Assim essa revisão da literatura de maneira geral compila apenas estudos envolvendo o leite caprino, e faz um apanhado a respeito da composição do leite caprino e o desenvolvimento da caprinocultura leiteira. Bem como busca enfatizar as proteínas e peptídeos do soro do leite caprino e as bioatividades a quais estas são relacionadas, de maneira a gerar um maior entendimento sobre suas características tecnológicas, atividades biológicas e funcionais possibilitando reunir conhecimentos de uma fonte proteica com diversos benefícios a saúde que geralmente é descartada, e pode ser melhor aproveitado pela indústria, proporcionando geração de renda para aqueles que sobrevivem desta atividade agropecuária.

Biografia do Autor

Tatiane Santi Gadelha, Universidade Federal da Paraíba

Professora do departamento de biologia molecular e celular, Universidade Federal da paraíba

Referências

Adeyeye, S. A. O. (2016). Fungal mycotoxins in foods: A review. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1213127

Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98, 244–256. https://doi.org/10.1016/j.fbp.2016.02.003

Al-Saadi, J. S., Shaker, K. A., & Ustunol, Z. (2014). Effect of heat and transglutaminase on solubility of goat milk protein-based films. International Journal of Dairy Technology, 67(3), 420–426. https://doi.org/10.1111/1471-0307.12138

Almaas, H., Eriksen, E., Sekse, C., Comi, I., Flengsrud, R., Holm, H., Jensen, E., Jacobsen, M., Langsrud, T., & Vegarud, G. E. (2011). Antibacterial peptides derived from caprine whey proteins, by digestion with human gastrointestinal juice. British Journal of Nutrition, 106(6), 896–905. https://doi.org/10.1017/S0007114511001085

Alves, C. Q., David, J. M., David, J. P., Bahia, M. V., & Aguiar, R. M. (2010). Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Química Nova, 33(10), 2202–2210. https://doi.org/10.1590/S0100-40422010001000033

Amalfitano, N., Stocco, G., Maurmayr, A., Pegolo, S., Cecchinato, A., & Bittante, G. (2020). Quantitative and qualitative detailed milk protein profiles of 6 cattle breeds: Sources of variation and contribution of protein genetic variants. Journal of Dairy Science, 103(12), 11190–11208. https://doi.org/10.3168/jds.2020-18497

Amigo, L., & Fontecha, J. (2011). Milk | Goat Milk. In Encyclopedia of Dairy Sciences (pp. 484–493). Elsevier. https://doi.org/10.1016/B978-0-12-374407-4.00313-7

Araújo, D. F. S., Guerra, G. C. B., Pintado, M. M. E., Sousa, Y. R. F., Algieri, F., Rodriguez-Nogales, A., Araújo, R. F., Gálvez, J., Queiroga, R. de C. R. E., & Rodriguez-Cabezas, M. E. (2017). Intestinal anti-inflammatory effects of goat whey on DNBS-induced colitis in mice. PLOS ONE, 12(9), e0185382. https://doi.org/10.1371/journal.pone.0185382

Aslam, H., Marx, W., Rocks, T., Loughman, A., Chandrasekaran, V., Ruusunen, A., Dawson, S. L., West, M., Mullarkey, E., Pasco, J. A., & Jacka, F. N. (2020). The effects of dairy and dairy derivatives on the gut microbiota: a systematic literature review. Gut Microbes, 12(1), 1799533. https://doi.org/10.1080/19490976.2020.1799533

Assis, P. O. A. de, Guerra, G. C. B., Araújo, D. F. de S., Araújo Júnior, R. F. de, Machado, T. A. D. G., Araújo, A. A. de, Lima, T. A. S. de, Garcia, H. E. M., & Queiroga, R. de C. R. do E. (2016). Intestinal anti-inflammatory activity of goat milk and goat yoghurt in the acetic acid model of rat colitis. International Dairy Journal, 56, 45–54. https://doi.org/10.1016/j.idairyj.2015.11.002

Attaallah, W., Yılmaz, A. M., Erdoğan, N., Yalçın, A. S., & Aktan, A. Ö. (2012). Whey protein versus whey protein hydrolyzate for the protection of azoxymethane and dextran sodium sulfate induced colonic tumors in rats. Pathology and Oncology Research, 18(4), 817–822. https://doi.org/10.1007/s12253-012-9509-9

Azizkhani, M., Saris, P. E. J., & Baniasadi, M. (2021). An in-vitro assessment of antifungal and antibacterial activity of cow, camel, ewe, and goat milk kefir and probiotic yogurt. Journal of Food Measurement and Characterization, 15(1), 406–415. https://doi.org/10.1007/s11694-020-00645-4

Ballard, K. D., Bruno, R. S., Seip, R. L., Quann, E. E., Volk, B. M., Freidenreich, D. J., Kawiecki, D. M., Kupchak, B. R., Chung, M.-Y., Kraemer, W. J., & Volek, J. S. (2009). Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial. Nutrition Journal, 8(1), 34. https://doi.org/10.1186/1475-2891-8-34

Batista, M. A., Campos, N. C. A., & Silvestre, M. P. C. (2018). Whey and protein derivatives: Applications in food products development, technological properties and functional effects on child health. Cogent Food & Agriculture, 4(1), 1509687. https://doi.org/10.1080/23311932.2018.1509687

Bolacali, M., & Küçük, M. (2012). Fertility and Milk Production Characteristics of Saanen Goats Raised in Muş Region. Kafkas Universitesi Veteriner Fakultesi Dergisi. https://doi.org/10.9775/kvfd.2011.4895

Brandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161. https://doi.org/10.1016/j.foodres.2015.01.016

Brans, G., Schroën, C. G. P. H., Van Der Sman, R. G. M., & Boom, R. M. (2004). Membrane fractionation of milk: State of the art and challenges. Journal of Membrane Science, 243(1–2), 263–272. https://doi.org/10.1016/j.memsci.2004.06.029

BRASIL. Ministério da Agricultura, P. e A. (2000). Instrução Normativa no37 de 31 de outubro de 2000. Aprova o Regulamento Técnico de Identidade e Qualidade de Leite de Cabra. Diário Oficial (da República Federativa do Brasil).

Bui-Klimke, T. R., & Wu, F. (2015). Ochratoxin A and Human Health Risk: A Review of the Evidence. Critical Reviews in Food Science and Nutrition, 55(13), 1860–1869. https://doi.org/10.1080/10408398.2012.724480

Çakır, B., Okuyan, B., Şener, G., & Tunali-Akbay, T. (2021). Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis. European Journal of Pharmacology, 891, 173781. https://doi.org/10.1016/j.ejphar.2020.173781

Ceballos, L. S., Morales, E. R., de la Torre Adarve, G., Castro, J. D., Martínez, L. P., & Sampelayo, M. R. S. (2009). Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis, 22(4), 322–329. https://doi.org/10.1016/j.jfca.2008.10.020

Champagne, C. P., & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18(2), 184–190. https://doi.org/10.1016/j.copbio.2007.03.001

Chauhan, S., Powar, P., & Mehra, R. (2021). A review on nutritional advantages and nutraceutical properties of cow and goat milk. International Journal of Applied Research, 7(10), 101–105. https://doi.org/10.22271/allresearch.2021.v7.i10b.9025

Clark, S., & Mora García, M. B. (2017). A 100-Year Review: Advances in goat milk research. Journal of Dairy Science, 100(12), 10026–10044. https://doi.org/10.3168/jds.2017-13287

Contreras, M. del M., Hernández-Ledesma, B., Amigo, L., Martín-Álvarez, P. J., & Recio, I. (2011). Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. LWT - Food Science and Technology, 44(1), 9–15. https://doi.org/10.1016/j.lwt.2010.06.017

Costa Paulino, B., de Souza Aquino, J., Leite de Souza, E., Alencar de Sousa Gomes, J., Paulo Lins, P., Alcoforado Sena de Lima, T., Maria dos Santos Alves, E., & do Nascimento, E. (2019). Goat Milk Whey Improves Nutritional Status, Fecal Microbial Composition and Intestinal Morphology in Female Rats Fed a Westernized Diet and Their Offspring. Journal of Food and Nutrition Research, 7(4), 291–302. https://doi.org/10.12691/jfnr-7-4-6

Costa, R. G., Freire, R. M. B., de Araújo, G. G. L., Queiroga, R. de C. R. do E., Paiva, G. N., Ribeiro, N. L., Oliveira, R. L., Domínguez, R., & Lorenzo, J. M. (2021). Effect of Increased Salt Water Intake on the Production and Composition of Dairy Goat Milk. Animals, 11(9), 2642. https://doi.org/10.3390/ani11092642

Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G., & Decroly, E. (2020). The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Research, 176, 104742. https://doi.org/10.1016/j.antiviral.2020.104742

Dalgleish, D. G. (2011). On the structural models of bovine casein micelles—review and possible improvements. Soft Matter, 7(6), 2265–2272. https://doi.org/10.1039/C0SM00806K

De Mejia, E. G., & Dia, V. P. (2010). The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer and Metastasis Reviews, 29(3), 511–528. https://doi.org/10.1007/s10555-010-9241-4

Delgadillo-Puga, C., Noriega, L. G., Morales-Romero, A. M., Nieto-Camacho, A., Granados-Portillo, O., Rodríguez-López, L. A., Alemán, G., Furuzawa-Carballeda, J., Tovar, A. R., Cisneros-Zevallos, L., & Torre-Villalvazo, I. (2020). Goat’s Milk Intake Prevents Obesity, Hepatic Steatosis and Insulin Resistance in Mice Fed A High-Fat Diet by Reducing Inflammatory Markers and Increasing Energy Expenditure and Mitochondrial Content in Skeletal Muscle. International Journal of Molecular Sciences, 21(15), 5530. https://doi.org/10.3390/ijms21155530

Demers-Mathieu, V., Gauthier, S. F., Britten, M., Fliss, I., Robitaille, G., & Jean, J. (2013). Antibacterial activity of peptides extracted from tryptic hydrolyzate of whey protein by nanofiltration. International Dairy Journal, 28(2), 94–101. https://doi.org/10.1016/j.idairyj.2012.09.003

Doherty, S. B., Auty, M. A., Stanton, C., Ross, R. P., Fitzgerald, G. F., & Brodkorb, A. (2012). Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. International Dairy Journal, 22(1), 31–43. https://doi.org/10.1016/j.idairyj.2011.06.009

Dullius, A., Goettert, M. I., & de Souza, C. F. V. (2018). Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. Journal of Functional Foods, 42, 58–74. https://doi.org/10.1016/J.JFF.2017.12.063

Esmaeilpour, M., Ehsani, M. R., Aminlari, M., Hoseini, E., & Azad, I. (2017). Аntimicrobial peptides de rived from goat’s milk whey proteins obtained by enzymatic hydrolysis. Journal of Food Biosciences and Technology, 7(1), 65–72.

Fathi, M., Martín, Á., & McClements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science & Technology, 39(1), 18–39. https://doi.org/10.1016/j.tifs.2014.06.007

Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology, 23(1), 13–27. https://doi.org/10.1016/j.tifs.2011.08.003

Furlong, S. J., Mader, J. S., & Hoskin, D. W. (2010). Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts. Experimental and Molecular Pathology, 88(3), 371–375. https://doi.org/10.1016/j.yexmp.2010.02.001

G, G., A, M., A, W., & H, K. (2016). Review on Goat Milk Composition and its Nutritive Value. Journal of Nutrition and Health Sciences, 3(4). https://doi.org/10.15744/2393-9060.3.401

Gifford, J. L., Hunter, H. N., & Vogel, H. J. (2005). Lactoferricin. Cellular and Molecular Life Sciences, 62(22), 2588–2598. https://doi.org/10.1007/s00018-005-5373-z

Giorgio, D., Di Trana, A., & Claps, S. (2018). Oligosaccharides, polyamines and sphingolipids in ruminant milk. Small Ruminant Research, 160, 23–30. https://doi.org/10.1016/j.smallrumres.2018.01.006

Gómez-Mascaraque, L. G., Miralles, B., Recio, I., & López-Rubio, A. (2016). Microencapsulation of a whey protein hydrolysate within micro-hydrogels: Impact on gastrointestinal stability and potential for functional yoghurt development. Journal of Functional Foods, 26, 290–300. https://doi.org/10.1016/j.jff.2016.08.006

Gumus, C. E., & Gharibzahedi, S. M. T. (2021). Yogurts supplemented with lipid emulsions rich in omega-3 fatty acids: New insights into the fortification, microencapsulation, quality properties, and health-promoting effects. Trends in Food Science & Technology, 110, 267–279. https://doi.org/10.1016/j.tifs.2021.02.016

Haenlein, G. F. W., & Wendorff, W. L. (2006). Sheep Milk. In Handbook of Milk of Non-Bovine Mammals (pp. 137–194). Blackwell Publishing Professional. https://doi.org/10.1002/9780470999738.ch7

Hammam, A. R. A., Salman, S. M., Elfaruk, M. S., & Alsaleem, K. A. (2021). Goat Milk: Compositional, Technological, Nutritional, and Therapeutic Aspects. https://doi.org/10.20944/PREPRINTS202108.0097.V1

Haque, E., & Chand, R. (2008). Antihypertensive and antimicrobial bioactive peptides from milk proteins. European Food Research and Technology, 227(1), 7–15. https://doi.org/10.1007/s00217-007-0689-6

Hernández-Ledesma, B., Recio, I., & Amigo, L. (2008). β-Lactoglobulin as source of bioactive peptides. Amino Acids, 35(2), 257–265. https://doi.org/10.1007/s00726-007-0585-1

Hernández-Ledesma, Blanca, Ramos, M., & Gómez-Ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey. Small Ruminant Research, 101(1–3), 196–204. https://doi.org/10.1016/j.smallrumres.2011.09.040

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052

Holt, C. (2016). Casein and casein micelle structures, functions and diversity in 20 species. International Dairy Journal, 60, 2–13. https://doi.org/10.1016/j.idairyj.2016.01.004

Ianni, A., Innosa, D., Oliva, E., Bennato, F., Grotta, L., Saletti, M. A., Pomilio, F., Sergi, M., & Martino, G. (2021). Effect of olive leaves feeding on phenolic composition and lipolytic volatile profile in goat milk. Journal of Dairy Science, 104(8), 8835–8845. https://doi.org/10.3168/jds.2021-20211

IBGE. (2020). Pesquisa da Pecuária Municipal 2020.

Ibrahim, H. R., Ahmed, A. S., & Miyata, T. (2017). Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. Journal of Advanced Research, 8(1), 63–71. https://doi.org/10.1016/j.jare.2016.12.002

Izzo, L., Luz, C., Ritieni, A., Quiles Beses, J., Mañes, J., & Meca, G. (2020). Inhibitory effect of sweet whey fermented by Lactobacillus plantarum strains against fungal growth: A potential application as an antifungal agent. Journal of Food Science, 85(11), 3920–3926. https://doi.org/10.1111/1750-3841.15487

J, D.-C., F, L., M, M., MJM, A., MS, C., & I, L.-A. (2015). Influence of Goat Milk on Iron Deficiency Anemia Recovery. International Journal of Dairy Science & Processing, 7–11. https://doi.org/10.19070/2379-1578-150003

Jia, W., Zhang, R., Zhu, Z., & Shi, L. (2021). LC-Q-Orbitrap HRMS-based proteomics reveals potential nutritional function of goat whey fraction. Journal of Functional Foods, 82, 104502. https://doi.org/10.1016/j.jff.2021.104502

Jones, R. G., Ober, C. K., Hodge, P., Kratochvíl, P., Moad, G., & Vert, M. (2012). Terminology for aggregation and self-assembly in polymer science (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(2), 463–492. https://doi.org/10.1351/PAC-REC-12-03-12

Kanda, A., Nakayama, K., Fukasawa, T., Koga, J., Kanegae, M., Kawanaka, K., & Higuchi, M. (2013). Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content. British Journal of Nutrition, 110(6), 981–987. https://doi.org/10.1017/S0007114512006174

Kareb, O., & Aïder, M. (2019). Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: a Critical Review. Probiotics and Antimicrobial Proteins, 11(2), 348–369. https://doi.org/10.1007/s12602-018-9427-6

Kljajevic, N. V., Tomasevic, I. B., Miloradovic, Z. N., Nedeljkovic, A., Miocinovic, J. B., & Jovanovic, S. T. (2018). Seasonal variations of Saanen goat milk composition and the impact of climatic conditions. Journal of Food Science and Technology, 55(1), 299–303. https://doi.org/10.1007/s13197-017-2938-4

Koirala, S., Prathumpai, W., & Anal, A. K. (2021). Effect of ultrasonication pretreatment followed by enzymatic hydrolysis of caprine milk proteins and on antioxidant and angiotensin converting enzyme (ACE) inhibitory activity of peptides thus produced. International Dairy Journal, 118, 105026. https://doi.org/10.1016/j.idairyj.2021.105026

Kong, R., Yang, G., Xue, R., Liu, M., Wang, F., Hu, J., Guo, X., & Chang, S. (2020). COVID-19 Docking Server: a meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19. Bioinformatics, 36(20), 5109–5111. https://doi.org/10.1093/bioinformatics/btaa645

Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2), 177–187. https://doi.org/10.1016/j.jff.2009.01.007

Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945–960. https://doi.org/10.1016/j.idairyj.2005.10.012

Kosseva, M. R., Panesar, P. S., Kaur, G., & Kennedy, J. F. (2009). Use of immobilised biocatalysts in the processing of cheese whey. International Journal of Biological Macromolecules, 45(5), 437–447. https://doi.org/10.1016/j.ijbiomac.2009.09.005

Lacroix, I. M. E., & Li-Chan, E. C. Y. (2013). Inhibition of Dipeptidyl Peptidase (DPP)-IV and α-Glucosidase Activities by Pepsin-Treated Whey Proteins. Journal of Agricultural and Food Chemistry, 61(31), 7500–7506. https://doi.org/10.1021/jf401000s

Lacroix, I. M. E., Meng, G., Cheung, I. W. Y., & Li-Chan, E. C. Y. (2016). Do whey protein-derived peptides have dual dipeptidyl-peptidase IV and angiotensin I-converting enzyme inhibitory activities? Journal of Functional Foods, 21, 87–96. https://doi.org/10.1016/j.jff.2015.11.038

Lestari, P., & Suyata. (2019). Antibacterial activity of hydrolysate protein from Etawa goat milk hydrolysed by crude extract bromelain. IOP Conference Series: Materials Science and Engineering, 509, 012111. https://doi.org/10.1088/1757-899X/509/1/012111

Liu, Y., Cai, J., & Zhang, F. (2021). Influence of goat colostrum and mature milk on intestinal microbiota. Journal of Functional Foods, 86, 104704. https://doi.org/10.1016/j.jff.2021.104704

Lopes, F. B., Da Silva, M. C., Miyagi, E. S., Fioravanti, M. C. S., Facó, O., Guimarães, R. F., Júnior, O. A. d. C., & McManus, C. M. (2012). Spatialization of climate, physical and socioeconomic factors that affect the dairy goat production in Brazil and their impact on animal breeding decisions. Pesquisa Veterinaria Brasileira, 32(11), 1073–1081. https://doi.org/10.1590/S0100-736X2012001100001

López-Rubio, A., & Lagaron, J. M. (2012). Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Science & Emerging Technologies, 13, 200–206. https://doi.org/10.1016/j.ifset.2011.10.012

Luz, C., Izzo, L., Ritieni, A., Mañes, J., & Meca, G. (2020). Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp: An application as biopreservation agent in pita bread. LWT, 118, 108717. https://doi.org/10.1016/j.lwt.2019.108717

Lynch, S. V., & Pedersen, O. (2016). The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 375(24), 2369–2379. https://doi.org/10.1056/NEJMra1600266

Ma, J.-J., Mao, X.-Y., Wang, Q., Yang, S., Zhang, D., Chen, S.-W., & Li, Y.-H. (2014). Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. LWT - Food Science and Technology, 56(2), 296–302. https://doi.org/10.1016/j.lwt.2013.12.019

Ma, Z., Zhang, F., Ma, H., Chen, X., Yang, J., Yang, Y., Yang, X., Tian, X., Yu, Q., Ma, Z., & Zhou, X. (2021). Effects of different types and doses of whey protein on the physiological and intestinal flora in D-galactose induced aging mice. PLOS ONE, 16(4), e0248329. https://doi.org/10.1371/journal.pone.0248329

Mangano, K. M., Bao, Y., & Zhao, C. (2019). Nutritional Properties of Whey Proteins. In Whey Protein Production, Chemistry, Functionality, and Applications. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119256052.ch5

Mann, B., Athira, S., Sharma, R., Kumar, R., & Sarkar, P. (2019). Bioactive Peptides from Whey Proteins. In Whey Proteins (pp. 519–547). Elsevier. https://doi.org/10.1016/B978-0-12-812124-5.00015-1

Mavrommatis, A., & Tsiplakou, E. (2020). The impact of the dietary supplementation level with Schizochytrium sp. on milk chemical composition and fatty acid profile, of both blood plasma and milk of goats. Small Ruminant Research, 193, 106252. https://doi.org/10.1016/j.smallrumres.2020.106252

Medeiros, G. K. V. V., Queiroga, R. C. R. E., Costa, W. K. A., Gadelha, C. A. A., e Lacerda, R. R., Lacerda, J. T. J. G., Pinto, L. S., Braganhol, E., Teixeira, F. C., Paula, P. P., Campos, M. I. F., Gonçalves, G. F., Pessôa, H. L. F., & Gadelha, T. S. (2018). Proteomic of goat milk whey and its bacteriostatic and antitumour potential. International Journal of Biological Macromolecules, 113, 116–123. https://doi.org/10.1016/j.ijbiomac.2018.01.200

Mehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Buttar, H. S., Telessy, I. G., Awuchi, C. G., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. P. F. (2021). Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. Journal of Functional Foods, 87, 104760. https://doi.org/10.1016/j.jff.2021.104760

Mehra, R., Singh, R., Nayan, V., Buttar, H. S., Kumar, N., Kumar, S., Bhardwaj, A., Kaushik, R., & Kumar, H. (2021). Nutritional attributes of bovine colostrum components in human health and disease: A comprehensive review. Food Bioscience, 40, 100907. https://doi.org/10.1016/j.fbio.2021.100907

Meng, Y., Liang, Z., Zhang, C., Hao, S., Han, H., Du, P., Li, A., Shao, H., Li, C., & Liu, L. (2021). Ultrasonic modification of whey protein isolate: Implications for the structural and functional properties. LWT, 112272. https://doi.org/10.1016/j.lwt.2021.112272

Minj, S., & Anand, S. (2020). Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy, 1(3), 233–258. https://doi.org/10.3390/dairy1030016

Mitsiopoulou, C., Sotirakoglou, K., Labrou, N. E., & Tsiplakou, E. (2021). The effect of whole sesame seeds on milk chemical composition, fatty acid profile and antioxidant status in goats. Livestock Science, 245, 104452. https://doi.org/10.1016/j.livsci.2021.104452

Mohan, A., Udechukwu, M. C., Rajendran, S. R. C. K., & Udenigwe, C. C. (2015). Modification of peptide functionality during enzymatic hydrolysis of whey proteins. RSC Advances, 5(118), 97400–97407. https://doi.org/10.1039/C5RA15140F

Mollea, C., Marmo, L., & Bosco, F. (2013). Valorisation of Cheese Whey, a By-Product from the Dairy Industry. In Food Industry. MUZZALUPO, I. Food Industry, Itália: EditoraInTech. https://doi.org/10.5772/53159

Mollica, M. P., Trinchese, G., Cimmino, F., Penna, E., Cavaliere, G., Tudisco, R., Musco, N., Manca, C., Catapano, A., Monda, M., Bergamo, P., Banni, S., Infascelli, F., Lombardi, P., & Crispino, M. (2021). Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients, 13(4), 1111. https://doi.org/10.3390/nu13041111

Monteiro, M. G., Brisola, M. V., & Filho, J. E. R. V. (2021). TD 2660 - Diagnóstico da Cadeia Produtiva de Caprinos e Ovinos no Brasil. Texto Para Discussão, 1–31. https://doi.org/10.38116/td2660

Moreno-Montoro, M., Olalla-Herrera, M., Rufián-Henares, J. Á., Martínez, R. G., Miralles, B., Bergillos, T., Navarro-Alarcón, M., & Jauregi, P. (2017). Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: Activity and physicochemical property relationship of the peptide components. Food and Function, 8(8), 2783–2791. https://doi.org/10.1039/c7fo00666g

Naik, L., Mann, B., Bajaj, R., Sangwan, R. B., & Sharma, R. (2013). Process optimization for the production of bio-functional whey protein hydrolysates: Adopting response surface methodology. International Journal of Peptide Research and Therapeutics, 19(3), 231–237. https://doi.org/10.1007/s10989-012-9340-x

Nascimento, T. V. C., Oliveira, R. L., Menezes, D. R., de Lucena, A. R. F., Queiroz, M. A. Á., Lima, A. G. V. O., Ribeiro, R. D. X., & Bezerra, L. R. (2021). Effects of condensed tannin-amended cassava silage blend diets on feeding behavior, digestibility, nitrogen balance, milk yield and milk composition in dairy goats. Animal, 15(1), 100015. https://doi.org/10.1016/j.animal.2020.100015

O’Neill, G. J., Egan, T., Jacquier, J. C., O’Sullivan, M., & Dolores O’Riordan, E. (2014). Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides. Food Chemistry, 160, 46–52. https://doi.org/10.1016/j.foodchem.2014.03.002

Osman, A., Goda, H. A., Abdel-Hamid, M., Badran, S. M., & Otte, J. (2016). Antibacterial peptides generated by Alcalase hydrolysis of goat whey. LWT - Food Science and Technology, 65, 480–486. https://doi.org/10.1016/j.lwt.2015.08.043

Panesar, P. S., Kumari, S., & Panesar, R. (2013). Biotechnological approaches for the production of prebiotics and their potential applications. Critical Reviews in Biotechnology, 33(4), 345–364. https://doi.org/10.3109/07388551.2012.709482

Park, Young W.; Haenlein, George F. W. ; Wendorff, W. L. (2017). Handbook of Milk of Non-Bovine Mammals. In Handbook of Milk of Non-Bovine Mammals (2 nd, p. 712). Wiley-Blackwell Publishers.

Park, Y. W. (2006). Goat Milk-Chemistry and Nutrition. In Handbook of Milk of Non-Bovine Mammals (pp. 34–58). Blackwell Publishing Professional. https://doi.org/10.1002/9780470999738.ch3

Park, Y. W. (2012). Goat Milk and Human Nutrition. Proceedings of the FIRST ASIA DAIRY GOAT CONFERENCE, 1(1), 31–39.

Park, Y. W., & Haenlein, G. F. W. (2021). A2 Bovine Milk and Caprine Milk as a Means of Remedy for Milk Protein Allergy. Dairy, 2(2), 191–201. https://doi.org/10.3390/dairy2020017

Pawlos, M. (2020). LOW-LACTOSE FERMENTED GOAT MILKS WITH BIFIDOBACTERIUM ANIMALIS SSP. LACTIS BB-12. Journal of Microbiology, Biotechnology and Food Sciences, 9(4), 751–755. https://doi.org/10.15414/jmbfs.2020.9.4.751-755

Pescuma, M., Hébert, E. M., Mozzi, F., & Font de Valdez, G. (2010). Functional fermented whey-based beverage using lactic acid bacteria. International Journal of Food Microbiology, 141(1–2), 73–81. https://doi.org/10.1016/j.ijfoodmicro.2010.04.011

Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: A review. Journal of Environmental Management, 110, 48–68. https://doi.org/10.1016/j.jenvman.2012.05.018

Pulina, G., Milán, M. J., Lavín, M. P., Theodoridis, A., Morin, E., Capote, J., Thomas, D. L., Francesconi, A. H. D., & Caja, G. (2018). Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. Journal of Dairy Science, 101(8), 6715–6729. https://doi.org/10.3168/jds.2017-14015

Queiroz, E. S., Lopes Rezende, A. L., Perrone, Í. T., Francisquini, J. d’Almeida, Fernandes de Carvalho, A., Germano Alves, N. M., Cappa de Oliveira, L. F., & Stephani, R. (2021). Spray drying and characterization of lactose-free goat milk. LWT, 147, 111516. https://doi.org/10.1016/j.lwt.2021.111516

Ranadheera, C. S., Evans, C. A., Baines, S. K., Balthazar, C. F., Cruz, A. G., Esmerino, E. A., Freitas, M. Q., Pimentel, T. C., Wittwer, A. E., Naumovski, N., Graça, J. S., Sant’Ana, A. S., Ajlouni, S., & Vasiljevic, T. (2019). Probiotics in Goat Milk Products: Delivery Capacity and Ability to Improve Sensory Attributes. Comprehensive Reviews in Food Science and Food Safety, 18(4), 867–882. https://doi.org/10.1111/1541-4337.12447

Razali, M. F., Narayanan, S., Md. Hazmi, N. A., Abdul Karim Shah, N. N., Mustapa Kamal, S. M., Mohd Fauzi, N. A., & Sulaiman, A. (2021). Minimal processing for goat milk preservation: Effect of high‐pressure processing on its quality. Journal of Food Processing and Preservation, 45(7). https://doi.org/10.1111/jfpp.15590

Razzaghi, A., Naserian, A. A., Valizadeh, R., Ebrahimi, S. H., Khorrami, B., Malekkhahi, M., & Khiaosa-ard, R. (2015). Pomegranate seed pulp, pistachio hulls, and tomato pomace as replacement of wheat bran increased milk conjugated linoleic acid concentrations without adverse effects on ruminal fermentation and performance of Saanen dairy goats. Animal Feed Science and Technology, 210, 46–55. https://doi.org/10.1016/j.anifeedsci.2015.09.014

Rubak, Y. T., Nuraida, L., Iswantini, D., & Prangdimurti, E. (2021). Identification of Angiotensin-I-converting inhibitory peptides in goat milk fermented by lactic acid bacteria isolated from fermented foods and breast milk. Food Science of Animal Resources. https://doi.org/10.5851/kosfa.2021.e55

Saipriya, K., Deshwal, G. K., Singh, A. K., Kapila, S., & Sharma, H. (2021). Effect of dairy unit operations on immunoglobulins, colour, rheology and microbiological characteristics of goat milk. International Dairy Journal, 121, 105118. https://doi.org/10.1016/j.idairyj.2021.105118

Sáiz-Abajo, M.-J., González-Ferrero, C., Moreno-Ruiz, A., Romo-Hualde, A., & González-Navarro, C. J. (2013). Thermal protection of β-carotene in re-assembled casein micelles during different processing technologies applied in food industry. Food Chemistry, 138(2–3), 1581–1587. https://doi.org/10.1016/j.foodchem.2012.11.016

Salari, F., Altomonte, I., Ribeiro, N. L., Ribeiro, M. N., Bozzi, R., & Martini, M. (2016). Effects of season on the quality of Garfagnina goat milk. Italian Journal of Animal Science, 15(4), 568–575. https://doi.org/10.1080/1828051X.2016.1247658

Sarabandi, K., Sadeghi Mahoonak, A., Hamishekar, H., Ghorbani, M., & Jafari, S. M. (2018). Microencapsulation of casein hydrolysates: Physicochemical, antioxidant and microstructure properties. Journal of Food Engineering, 237, 86–95. https://doi.org/10.1016/j.jfoodeng.2018.05.036

Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949–1956. https://doi.org/10.1016/j.peptides.2010.06.020

Schulmeister, U., Hochwallner, H., Swoboda, I., Focke-Tejkl, M., Geller, B., Nystrand, M., Härlin, A., Thalhamer, J., Scheiblhofer, S., Keller, W., Niggemann, B., Quirce, S., Ebner, C., Mari, A., Pauli, G., Herz, U., Valenta, R., & Spitzauer, S. (2009). Cloning, Expression, and Mapping of Allergenic Determinants of αS1-Casein, a Major Cow’s Milk Allergen. The Journal of Immunology, 182(11), 7019–7029. https://doi.org/10.4049/jimmunol.0712366

Sgarbieri, V. C. (2004). Propriedades fisiológicas-funcionais das proteínas do soro de leite. Revista de Nutrição, 17(4), 397–409. https://doi.org/10.1590/S1415-52732004000400001

Silanikove, N., Leitner, G., Merin, U., & Prosser, C. G. (2010). Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Ruminant Research, 89(2–3), 110–124. https://doi.org/10.1016/j.smallrumres.2009.12.033

Silva, P. D. L. da, Bezerra, M. de F., Santos, K. M. O. dos, & Correia, R. T. P. (2015). Potentially probiotic ice cream from goat’s milk: Characterization and cell viability during processing, storage and simulated gastrointestinal conditions. LWT - Food Science and Technology, 62(1), 452–457. https://doi.org/10.1016/j.lwt.2014.02.055

Silva, N. N., Casanova, F., Pinto, M. da S., Carvalho, A. F. de, & Gaucheron, F. (2019). Micelas de caseína: dos monômeros à estrutura supramolecular. Brazilian Journal of Food Technology, 22. https://doi.org/10.1590/1981-6723.18518

Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Souza, M. W. S. de, Lopes Junior, C. de O., & Afonso, W. de O. (2012). Analysis of whey protein hydrolysates: peptide profile and ACE inhibitory activity. Brazilian Journal of Pharmaceutical Sciences, 48(4), 747–757. https://doi.org/10.1590/S1984-82502012000400019

Smithers, G. W. (2008). Whey and whey proteins-From “gutter-to-gold.” International Dairy Journal, 18(7), 695–704. https://doi.org/10.1016/j.idairyj.2008.03.008

Soliman, G. Z. A. (2005). Comparison Of Chemical And Mineral Content Of Milk From Human, Cow, Buffalo, Camel And Goat In Egypt. The Egyptian Journal of Hospital Medicine, 21(1), 116–130. https://doi.org/10.21608/ejhm.2005.18054

Soloshenko, K. I., Lych, I. V., Voloshyna, I. M., & Shkotova, L. V. (2020). Polyfunctional properties of goat colostrum proteins and their use. Biopolymers and Cell, 36(3), 197–209. https://doi.org/10.7124/bc.000A2B

Sousa, G. T., Lira, F. S., Rosa, J. C., de Oliveira, E. P., Oyama, L. M., Santos, R. V, & Pimentel, G. D. (2012). Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids in Health and Disease, 11(1), 67. https://doi.org/10.1186/1476-511X-11-67

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Tajaddini, M. A., Dayani, O., Khezri, A., Tahmasbi, R., & Sharifi-Hoseini, M. M. (2021). Production efficiency, milk yield, and milk composition and fatty acids profile of lactating goats feeding formaldehyde-treated canola meal in two levels of dietary crude protein. Small

Ruminant Research, 204, 106519. https://doi.org/10.1016/j.smallrumres.2021.106519

Tavares, G. M., Croguennec, T., Carvalho, A. F., & Bouhallab, S. (2014). Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends in Food Science & Technology, 37(1), 5–20. https://doi.org/10.1016/j.tifs.2014.02.008

Tilg, H., Zmora, N., Adolph, T. E., & Elinav, E. (2020). The intestinal microbiota fuelling metabolic inflammation. Nature Reviews Immunology, 20(1), 40–54. https://doi.org/10.1038/s41577-019-0198-4

Turkmen, N. (2017). The Nutritional Value and Health Benefits of Goat Milk Components. In Nutrients in Dairy and their Implications on Health and Disease (pp. 441–449). Elsevier. https://doi.org/10.1016/B978-0-12-809762-5.00035-8

Udenigwe, C. C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science & Technology, 36(2), 137–143. https://doi.org/10.1016/j.tifs.2014.02.004

Vankadari, N., & Wilce, J. A. (2020). Emerging COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerging Microbes & Infections, 9(1), 601–604. https://doi.org/10.1080/22221751.2020.1739565

Verruck, S., Dantas, A., & Prudencio, E. S. (2019a). Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. Journal of Functional Foods, 52, 243–257. https://doi.org/10.1016/j.jff.2018.11.017

Verruck, S., Dantas, A., & Prudencio, E. S. (2019b). Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. Journal of Functional Foods, 52, 243–257. https://doi.org/10.1016/J.JFF.2018.11.017

Watkins, P. J., Jaborek, J. R., Teng, F., Day, L., Castada, H. Z., Baringer, S., & Wick, M. (2021). Branched chain fatty acids in the flavour of sheep and goat milk and meat: A review. Small Ruminant Research, 200, 106398. https://doi.org/10.1016/j.smallrumres.2021.106398

Xia, S., Lan, Q., Su, S., Wang, X., Xu, W., Liu, Z., Zhu, Y., Wang, Q., Lu, L., & Jiang, S. (2020). The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduction and Targeted Therapy, 5(1), 92. https://doi.org/10.1038/s41392-020-0184-0

Xia, Y., Yu, J., Xu, W., & Shuang, Q. (2020). Purification and characterization of angiotensin-I-converting enzyme inhibitory peptides isolated from whey proteins of milk fermented with Lactobacillus plantarum QS670. Journal of Dairy Science, 103(6), 4919–4928. https://doi.org/10.3168/jds.2019-17594

Yadav, J. S. S., Yan, S., Pilli, S., Kumar, L., Tyagi, R. D., & Surampalli, R. Y. (2015). Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances, 33(6), 756–774. https://doi.org/10.1016/j.biotechadv.2015.07.002

Zhang, Q.-X., Wu, H., Ling, Y.-F., & Lu, R.-R. (2013). Isolation and identification of antioxidant peptides derived from whey protein enzymatic hydrolysate by consecutive chromatography and Q-TOF MS. Journal of Dairy Research, 80(3), 367–373. https://doi.org/10.1017/S0022029913000320

Zhou, D.-Y., Zhu, B.-W., Qiao, L., Wu, H.-T., Li, D.-M., Yang, J.-F., & Murata, Y. (2012). In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera. Food and Bioproducts Processing, 90(2), 148–154. https://doi.org/10.1016/j.fbp.2011.02.002

Downloads

Publicado

02/01/2022

Como Citar

CAMPOS, M. I. F.; LIMA, A. K. de S.; LOPES NETO, J. H. P. .; OLIVEIRA , J. M. C. de; GADELHA, T. S. . Artigo de revisão: Propriedades biológicas das proteínas e peptídeos do soro do leite caprino. Research, Society and Development, [S. l.], v. 11, n. 1, p. e6611124340, 2022. DOI: 10.33448/rsd-v11i1.24340. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24340. Acesso em: 24 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas