Doença de Parkinson secundária a COVID-19: uma revisão sistemática
DOI:
https://doi.org/10.33448/rsd-v11i1.24397Palavras-chave:
Doença de Parkinson; Infecções por Coronavirus; Neurologia.Resumo
Objetivo: O presente trabalho teve como objetivo realizar uma revisão sistemática a respeito da Doença de Parkinson e sua relação com a COVID-19. Métodos: Utilizamos e adaptamos os critérios presentes no PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) e objetivou a identificação de publicações revisadas por pares pertencentes a temática da doença de Parkinson relacionada à COVID-19. Resultados: A doença de Parkinson após a COVID-19 está presente em alguns casos e parece estar relacionada com mecanismos de hiperinflamação mediada pelo Sars-Cov-2, principalmente em pacientes abaixo dos 60 anos. Conclusão: A ocorrência da doença de Parkinson após uma infecção pelo novo coronavírus parece ser explicada pelos efeitos citolíticos do vírus, acúmulo de proteínas intracelulares, modificações epigenéticas e interações em vias inflamatórias que causam morte neuronal. A COVID-19 também está associada à piora dos sintomas da Doença de Parkinson previamente diagnosticada.
Referências
Andrzejewski, K., Jampolska, M., Zaremba, M., Joniec-Maciejak, I., Boguszewski, P. M., & Kaczyńska, K. (2020). Respiratory pattern and phrenic and hypoglossal nerve activity during normoxia and hypoxia in 6-OHDA-induced bilateral model of Parkinson’s disease. The Journal of Physiological Sciences, 70(1), 16. https://doi.org/10.1186/s12576-020-00743-4
Artusi, C. A., Romagnolo, A., Imbalzano, G., Marchet, A., Zibetti, M., Rizzone, M. G., & Lopiano, L. (2020). COVID-19 in Parkinson’s disease: Report on prevalence and outcome. Parkinsonism & Related Disorders, 80, 7–9. https://doi.org/10.1016/j.parkreldis.2020.09.008
Beauchamp, L. C., Finkelstein, D. I., Bush, A. I., Evans, A. H., & Barnham, K. J. (2020). Parkinsonism as a Third Wave of the COVID-19 Pandemic? Journal of Parkinson’s Disease, 10(4), 1343–1353. https://doi.org/10.3233/JPD-202211
Brundin, P., Nath, A., & Beckham, J. D. (2020). Is COVID-19 a Perfect Storm for Parkinson’s Disease? Trends in Neurosciences, 43(12), 931–933. https://doi.org/10.1016/j.tins.2020.10.009
Chaudhry, Z., Klenja, D., Janjua, N., Cami-Kobeci, G., & Ahmed, B. (2020). COVID-19 and Parkinson’s Disease: Shared Inflammatory Pathways Under Oxidative Stress. Brain Sciences, 10(11), 807. https://doi.org/10.3390/brainsci10110807
Cilia, R., Bonvegna, S., Straccia, G., Andreasi, N. G., Elia, A. E., Romito, L. M., Devigili, G., Cereda, E., & Eleopra, R. (2020). Effects of COVID ‐19 on Parkinson’s Disease Clinical Features: A Community‐Based Case‐Control Study. Movement Disorders, 35(8), 1287–1292. https://doi.org/10.1002/mds.28170
Claverie, J.-M. (2020). A Putative Role of de-Mono-ADP-Ribosylation of STAT1 by the SARS-CoV-2 Nsp3 Protein in the Cytokine Storm Syndrome of COVID-19. Viruses, 12(6), 646. https://doi.org/10.3390/v12060646
Cohen, M. E., Eichel, R., Steiner-Birmanns, B., Janah, A., Ioshpa, M., Bar-Shalom, R., Paul, J. J., Gaber, H., Skrahina, V., Bornstein, N. M., & Yahalom, G. (2020). A case of probable Parkinson’s disease after SARS-CoV-2 infection. The Lancet Neurology, 19(10), 804–805. https://doi.org/10.1016/S1474-4422(20)30305-7
Coimbra-Costa, D., Alva, N., Duran, M., Carbonell, T., & Rama, R. (2017). Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biology, 12, 216–225. https://doi.org/10.1016/j.redox.2017.02.014
Cova, I., Battista, M. E. di, Vanacore, N., Papi, C. P., Alampi, G., Rubino, A., Valente, M., Meco, G., Contri, P., Pucchio, A. di, Lacorte, E., Priori, A., Mariani, C., & Pomati, S. (2017). Validation of the Italian version of the Non Motor Symptoms Scale for Parkinson’s disease. Parkinsonism & Related Disorders, 34, 38–42. https://doi.org/10.1016/j.parkreldis.2016.10.020
Desforges, M., Coupanec, A. le, Dubeau, P., Bourgouin, A., Lajoie, L., Dubé, M., & Talbot, P. J. (2019). Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses, 12(1), 14. https://doi.org/10.3390/v12010014
Deumens, R., Blokland, A., & Prickaerts, J. (2002). Modeling Parkinson’s Disease in Rats: An Evaluation of 6-OHDA Lesions of the Nigrostriatal Pathway. Experimental Neurology, 175(2), 303–317. https://doi.org/10.1006/exnr.2002.7891
Dickman, M. S. (2001). von Economo Encephalitis. Archives of Neurology, 58(10), 1696. https://doi.org/10.1001/archneur.58.10.1696
Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., Geng, J., Cai, J., Han, H., Li, X., Kang, W., Weng, D., Liang, P., & Jiang, S. (2004). Organ distribution of severe acute respiratory syndrome(SARS) associated coronavirus(SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. The Journal of Pathology, 203(2), 622–630. https://doi.org/10.1002/path.1560
Dong, S., Liu, P., Luo, Y., Cui, Y., Song, L., & Chen, Y. (2020). Pathophysiology of SARS-CoV-2 infection in patients with intracerebral hemorrhage. Aging, 12(13), 13791–13802. https://doi.org/10.18632/aging.103511
Faber, I., Brandão, P. R. P., Menegatti, F., Bispo, D. D. C., Maluf, F. B., & Cardoso, F. (2020). Coronavirus Disease 2019 and Parkinsonism: A Non‐post‐encephalitic Case. Movement Disorders, 35(10), 1721–1722. https://doi.org/10.1002/mds.28277
Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M. B., Dodel, R., Dubois, B., Holloway, R., Jankovic, J., Kulisevsky, J., Lang, A. E., Lees, A., Leurgans, S., LeWitt, P. A., Nyenhuis, D., … LaPelle, N. (2008). Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders, 23(15), 2129–2170. https://doi.org/10.1002/mds.22340
Görlach, A., Dimova, E. Y., Petry, A., Martínez-Ruiz, A., Hernansanz-Agustín, P., Rolo, A. P., Palmeira, C. M., & Kietzmann, T. (2015). Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biology, 6, 372–385. https://doi.org/10.1016/j.redox.2015.08.016
Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Zhan, J., Wang, S., Xie, Z., Zhuang, H., Wu, B., Zhong, H., Shao, H., Fang, W., Gao, D., Pei, F., Li, X., He, Z., … Leong, A. S.-Y. (2005). Multiple organ infection and the pathogenesis of SARS. Journal of Experimental Medicine, 202(3), 415–424. https://doi.org/10.1084/jem.20050828
Haddadi, K., Ghasemian, R., & Shafizad, M. (2020). Basal Ganglia Involvement and Altered Mental Status: A Unique Neurological Manifestation of Coronavirus Disease 2019. Cureus. https://doi.org/10.7759/cureus.7869
Hernansanz-Agustín, P., Izquierdo-Álvarez, A., Sánchez-Gómez, F. J., Ramos, E., Villa-Piña, T., Lamas, S., Bogdanova, A., & Martínez-Ruiz, A. (2014). Acute hypoxia produces a superoxide burst in cells. Free Radical Biology and Medicine, 71, 146–156. https://doi.org/10.1016/j.freeradbiomed.2014.03.011
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Iwata, H., Goettsch, C., Sharma, A., Ricchiuto, P., Goh, W. W. bin, Halu, A., Yamada, I., Yoshida, H., Hara, T., Wei, M., Inoue, N., Fukuda, D., Mojcher, A., Mattson, P. C., Barabási, A.-L., Boothby, M., Aikawa, E., Singh, S. A., & Aikawa, M. (2016). PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. Nature Communications, 7(1), 12849. https://doi.org/10.1038/ncomms12849
Jang, H., Boltz, D. A., Webster, R. G., & Smeyne, R. J. (2009). Viral parkinsonism. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1792(7), 714–721. https://doi.org/10.1016/j.bbadis.2008.08.001
Jang, H., Boltz, D., McClaren, J., Pani, A. K., Smeyne, M., Korff, A., Webster, R., & Smeyne, R. J. (2012). Inflammatory Effects of Highly Pathogenic H5N1 Influenza Virus Infection in the CNS of Mice. Journal of Neuroscience, 32(5), 1545–1559. https://doi.org/10.1523/JNEUROSCI.5123-11.2012
Kim, J., Choi, D., Jeong, H., Kim, J., Kim, D. W., Choi, S. Y., Park, S.-M., Suh, Y. H., Jou, I., & Joe, E.-H. (2013). DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: A novel anti-inflammatory function of DJ-1. Neurobiology of Disease, 60, 1–10. https://doi.org/10.1016/j.nbd.2013.08.007
Marreiros, R., Müller-Schiffmann, A., Trossbach, S. v, Prikulis, I., Hänsch, S., Weidtkamp-Peters, S., Moreira, A. R., Sahu, S., Soloviev, I., Selvarajah, S., Lingappa, V. R., & Korth, C. (2020). Disruption of cellular proteostasis by H1N1 influenza A virus causes α-synuclein aggregation. Proceedings of the National Academy of Sciences, 117(12), 6741–6751. https://doi.org/10.1073/pnas.1906466117
Martínez-Martín, P., Forjaz, M. J., Cubo, E., Frades, B., & de Pedro Cuesta, J. (2006). Global versus factor-related impression of severity in Parkinson’s disease: A new clinimetric index (CISI-PD). Movement Disorders, 21(2), 208–214. https://doi.org/10.1002/mds.20697
Méndez-Guerrero, A., Laespada-García, M. I., Gómez-Grande, A., Ruiz-Ortiz, M., Blanco-Palmero, V. A., Azcarate-Diaz, F. J., Rábano-Suárez, P., Álvarez-Torres, E., de Fuenmayor-Fernández de la Hoz, C. P., Pérez, D. V., Rodríguez-Montalbán, R., Pérez-Rivilla, A., Catalán, J. S., Ramos-González, A., & de la Aleja, J. G. (2020). Acute hypokinetic-rigid syndrome following SARS-CoV-2 infection. Neurology, 95(15), e2109–e2118. https://doi.org/10.1212/WNL.0000000000010282
Merello, M., Bhatia, K. P., & Obeso, J. A. (2021). SARS-CoV-2 and the risk of Parkinson’s disease: facts and fantasy. The Lancet Neurology, 20(2), 94–95. https://doi.org/10.1016/S1474-4422(20)30442-7
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007
Muldoon, L. L., Alvarez, J. I., Begley, D. J., Boado, R. J., del Zoppo, G. J., Doolittle, N. D., Engelhardt, B., Hallenbeck, J. M., Lonser, R. R., Ohlfest, J. R., Prat, A., Scarpa, M., Smeyne, R. J., Drewes, L. R., & Neuwelt, E. A. (2013). Immunologic Privilege in the Central Nervous System and the Blood–Brain Barrier. Journal of Cerebral Blood Flow & Metabolism, 33(1), 13–21. https://doi.org/10.1038/jcbfm.2012.153
Netland, J., Meyerholz, D. K., Moore, S., Cassell, M., & Perlman, S. (2008). Severe Acute Respiratory Syndrome Coronavirus Infection Causes Neuronal Death in the Absence of Encephalitis in Mice Transgenic for Human ACE2. Journal of Virology, 82(15), 7264–7275. https://doi.org/10.1128/JVI.00737-08
Niizuma, K., Endo, H., & Chan, P. H. (2009). Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. Journal of Neurochemistry, 109, 133–138. https://doi.org/10.1111/j.1471-4159.2009.05897.x
Obermeier, B., Daneman, R., & Ransohoff, R. M. (2013). Development, maintenance and disruption of the blood-brain barrier. Nature Medicine, 19(12), 1584–1596. https://doi.org/10.1038/nm.3407
Pagano, G., Niccolini, F., & Politis, M. (2016). Imaging in Parkinson’s disease. Clinical Medicine, 16(4), 371–375. https://doi.org/10.7861/clinmedicine.16-4-371
Paniz‐Mondolfi, A., Bryce, C., Grimes, Z., Gordon, R. E., Reidy, J., Lednicky, J., Sordillo, E. M., & Fowkes, M. (2020). Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). Journal of Medical Virology, 92(7), 699–702. https://doi.org/10.1002/jmv.25915
Pavel, A., Murray, D. K., & Stoessl, A. J. (2020). COVID-19 and selective vulnerability to Parkinson’s disease. The Lancet Neurology, 19(9), 719. https://doi.org/10.1016/S1474-4422(20)30269-6
Pilotto, A., Odolini, S., Masciocchi, S., Comelli, A., Volonghi, I., Gazzina, S., Nocivelli, S., Pezzini, A., Focà, E., Caruso, A., Leonardi, M., Pasolini, M. P., Gasparotti, R., Castelli, F., Ashton, N. J., Blennow, K., Zetterberg, H., & Padovani, A. (2020). Steroid‐Responsive Encephalitis in Coronavirus Disease 2019. Annals of Neurology, 88(2), 423–427. https://doi.org/10.1002/ana.25783
Politis, M. (2014). Neuroimaging in Parkinson disease: from research setting to clinical practice. Nature Reviews Neurology, 10(12), 708–722. https://doi.org/10.1038/nrneurol.2014.205
Prieto-Lloret, J., Donnelly, D. F., Rico, A. J., Moratalla, R., González, C., & Rigual, R. J. (2007). Hypoxia transduction by carotid body chemoreceptors in mice lacking dopamine D 2 receptors. Journal of Applied Physiology, 103(4), 1269–1275. https://doi.org/10.1152/japplphysiol.00391.2007
Rábano-Suárez, P., Bermejo-Guerrero, L., Méndez-Guerrero, A., Parra-Serrano, J., Toledo-Alfocea, D., Sánchez-Tejerina, D., Santos-Fernández, T., Folgueira-López, M. D., Gutiérrez-Gutiérrez, J., Ayuso-García, B., de la Aleja, J. G., & Benito-León, J. (2020). Generalized myoclonus in COVID-19. Neurology, 95(6), e767–e772. https://doi.org/10.1212/WNL.0000000000009829
Ramani, A., Müller, L., Ostermann, P. N., Gabriel, E., Abida‐Islam, P., Müller‐Schiffmann, A., Mariappan, A., Goureau, O., Gruell, H., Walker, A., Andrée, M., Hauka, S., Houwaart, T., Dilthey, A., Wohlgemuth, K., Omran, H., Klein, F., Wieczorek, D., Adams, O., … Gopalakrishnan, J. (2020). SARS ‐CoV‐2 targets neurons of 3D human brain organoids. The EMBO Journal, 39(20). https://doi.org/10.15252/embj.2020106230
Sadasivan, S., Zanin, M., O’Brien, K., Schultz-Cherry, S., & Smeyne, R. J. (2015). Induction of Microglia Activation after Infection with the Non-Neurotropic A/CA/04/2009 H1N1 Influenza Virus. PLOS ONE, 10(4), e0124047. https://doi.org/10.1371/journal.pone.0124047
Sulzer, D. (2007). Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends in Neurosciences, 30(5), 244–250. https://doi.org/10.1016/j.tins.2007.03.009
Sulzer, D., Antonini, A., Leta, V., Nordvig, A., Smeyne, R. J., Goldman, J. E., Al-Dalahmah, O., Zecca, L., Sette, A., Bubacco, L., Meucci, O., Moro, E., Harms, A. S., Xu, Y., Fahn, S., & Chaudhuri, K. R. (2020). COVID-19 and possible links with Parkinson’s disease and parkinsonism: from bench to bedside. Npj Parkinson’s Disease, 6(1), 18. https://doi.org/10.1038/s41531-020-00123-0
Takahashi, M., & Yamada, T. (1999). Viral etiology for Parkinson’s disease–a possible role of influenza A virus infection. Japanese Journal of Infectious Diseases, 52(3), 89–98.
Texakalidis, P., Giannopoulos, S., Jonnalagadda, A. K., Kokkinidis, D. G., Machinis, T., Reavey-Cantwell, J., Armstrong, E. J., & Jabbour, P. (2018). Carotid Artery Endarterectomy versus Carotid Artery Stenting for Restenosis After Carotid Artery Endarterectomy: A Systematic Review and Meta-Analysis. World Neurosurgery, 115, 421-429.e1. https://doi.org/10.1016/j.wneu.2018.02.196
Texakalidis, P., Lu, V. M., Yolcu, Y., Kerezoudis, P., Alvi, M. A., Parney, I. F., Fogelson, J. L., & Bydon, M. (2019). Impact of Powdered Vancomycin on Preventing Surgical Site Infections in Neurosurgery: A Systematic Review and Meta-analysis. Neurosurgery, 84(3), 569–580. https://doi.org/10.1093/neuros/nyy288
Vavougios, G. D. (2020). A data-driven hypothesis on the epigenetic dysregulation of host metabolism by SARS coronaviral infection: Potential implications for the SARS-CoV-2 modus operandi. Medical Hypotheses, 140, 109759. https://doi.org/10.1016/j.mehy.2020.109759
Vavougios, G. D. (2021). Human coronaviruses in idiopathic Parkinson’s disease: Implications of SARS-CoV-2’s modulation of the host’s transcriptome. Infection, Genetics and Evolution, 89, 104733. https://doi.org/10.1016/j.meegid.2021.104733
Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). JAMA, 324(8), 782. https://doi.org/10.1001/jama.2020.12839
Xu, J., Zhong, S., Liu, J., Li, L., Li, Y., Wu, X., Li, Z., Deng, P., Zhang, J., Zhong, N., Ding, Y., & Jiang, Y. (2005). Detection of Severe Acute Respiratory Syndrome Coronavirus in the Brain: Potential Role of the Chemokine Mig in Pathogenesis. Clinical Infectious Diseases, 41(8), 1089–1096. https://doi.org/10.1086/444461
Zhang, Q., Schultz, J. L., Aldridge, G. M., Simmering, J. E., & Narayanan, N. S. (2020). Coronavirus Disease 201 9 Case Fatality and Parkinson’s Disease. Movement Disorders, 35(11), 1914–1915. https://doi.org/10.1002/mds.28325
Zhang, Y., Mao, D., Roswit, W. T., Jin, X., Patel, A. C., Patel, D. A., Agapov, E., Wang, Z., Tidwell, R. M., Atkinson, J. J., Huang, G., McCarthy, R., Yu, J., Yun, N. E., Paessler, S., Lawson, T. G., Omattage, N. S., Brett, T. J., & Holtzman, M. J. (2015). PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nature Immunology, 16(12), 1215–1227. https://doi.org/10.1038/ni.3279
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Moises Hamoy; Gabriel Hans Reis Braga; Jones Vinicius Santana Chaves; Ana Carolina Serrão Maia; Diego Arthur Castro Cabral; Fernanda Myllena Sousa Campos; João Paulo do Vale Medeiros; Leonardo Giovanni Castro Cabral; Bruno Patricio dos Santos Oliveira; Joyce Pantoja Braga; Vanessa Jóia de Mello; Eric Homero Albuquerque Paschoal
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.