Efeito da modificação de um xerogel de sílica por dodecilsulfato de sódio para a adsorção do corante violeta cristal em meio aquoso

Autores

DOI:

https://doi.org/10.33448/rsd-v10i17.24470

Palavras-chave:

Violeta cristal; Corante; Adsorção; Xerogéis de sílica.

Resumo

O descarte incorreto de corantes tem sido uma das causas para a poluição de águas. Ações para reduzir estes impactos têm sido feitas, e uma alternativa é a adsorção de corantes em materiais à base de sílica como os xerogéis. Poucos relatos na literatura, entretanto, mostram a modificação de xerogéis à base de sílica usando tensoativos para adsorção de corantes. Neste trabalho, nós preparamos xerogéis à base de sílica (SiO2) para explorar a influência da modificação da superfície com dodecilsulfato de sódio (SDS) na adsorção de um corante, violeta cristal (VC), em água usando espectroscopia na região do ultra-violeta visível. As propriedades texturais dos xerogéis, SiO2 não modificado (SiO2-NM) e SiO2 modificado com SDS (SiO2-SDS) mostraram que as amostras são mesoporosas. As cargas superficiais para SiO2-NM e SiO2-SDS foram negativas nas condições experimentais usadas como mostrado pelos dados de pH no ponto de carga zero pH (PCZ). A capacidade de adsorção de SiO2-SDS para VC foi superior àquela para SiO2-NM, com maior constante de velocidade para SiO2-SDS. Este comportamento foi atribuído às micelas de SDS formadas nos poros da sílica seca, sugerindo interações eletrostáticas entre as cabeças polares aniônicas das micelas e o VC catiônico. As cinéticas de adsorção foram melhores ajustadas pelo modelo de pseudo segunda-ordem. Os dados de equilíbrio foram melhores descritos pelo modelo de isoterma de Langmuir. Os valores de qm de VC para SiO2-SDS foram de 25,8 mg g−1 e 1,59 mg g−1 on SiO2-NM. Estes resultados são importantes para auxiliar no tratamento de efluentes industriais.

Referências

Ahmad, R. (2009). Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of Hazardous Materials, 171(1–3), 767–773. https://doi.org/10.1016/j.jhazmat.2009.06.060

Ain, Q. U., Zhang, H., Yaseen, M., Rasheed, U., Liu, K., Subhan, S., & Tong, Z. (2020). Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb(II), Cd(II), and crystal violet from aqueous solution. Journal of Cleaner Production, 247(Ii), 119088. https://doi.org/10.1016/j.jclepro.2019.119088

Akpotu, S. O., & Moodley, B. (2018). Effect of synthesis conditions on the morphology of mesoporous silica from elephant grass and its application in the adsorption of cationic and anionic dyes. Journal of Environmental Chemical Engineering, 6(4), 5341–5350. https://doi.org/10.1016/j.jece.2018.08.027

B.Colthup, N., H. Daly, L., & E. Wiberley, S. (1990). Introduction to Infrared and Raman Spectroscopy (Third Edit). Academic Press.

Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dye-containing effluents: A review. Bioresource Technology, 58(3), 217–227. https://doi.org/10.1016/S0960-8524(96)00113-7

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373–380. https://doi.org/10.1021/ja01145a126

Brinker, C. J., & Scherer, G. W. (1990). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (First). Academic Press.

Bruzzoniti, M. C., De Carlo, R. M., Rivoira, L., Del Bubba, M., Pavani, M., Riatti, M., & Onida, B. (2016). Adsorption of bentazone herbicide onto mesoporous silica: application to environmental water purification. Environmental Science and Pollution Research, 23(6), 5399–5409. https://doi.org/10.1007/s11356-015-5755-1

Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African, 5, 1–11. https://doi.org/10.1016/j.sciaf.2019.e00116

Cloarec, J. P., Chevalier, C., Genest, J., Beauvais, J., Chamas, H., Chevolot, Y., Baron, T., & Souifi, A. (2016). PH driven addressing of silicon nanowires onto Si3N4/SiO2 micro-patterned surfaces. Nanotechnology, 27(29). https://doi.org/10.1088/0957-4484/27/29/295602

Dabagh, A., Bagui, A., Abali, M., Aziam, R., Chiban, M., Sinan, F., & Zerbet, M. (2020). Adsorption of Crystal Violet from aqueous solution onto eco-friendly native Carpobrotus edulis plant. Materials Today: Proceedings, 37, 3980–3986. https://doi.org/10.1016/j.matpr.2020.10.349

Da̧browski, A. (2001). Adsorption - From theory to practice. Advances in Colloid and Interface Science, 93(1–3), 135–224. https://doi.org/10.1016/S0001-8686(00)00082-8

Dallago, R. M., Smaniotto, A., & Oliveira, L. C. A. de. (2005). Resíduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso. Química Nova, 28(3), 433–437. https://doi.org/10.1590/s0100-40422005000300013

Dorigon, L., Ruiz de Almeida da Frota, J. P., Kreutz, J. C., Mello Giona, R., Pereira Moisés, M., & Bail, A. (2017). Synthesis and characterization of mesoporous silica-coated magnetite containing cetyltrimethylammonium bromide and evaluation on the adsorption of sodium dodecylbenzenesulfonate. Applied Surface Science, 420, 954–962. https://doi.org/10.1016/j.apsusc.2017.05.249

Du, C., Song, Y., Shi, S., Jiang, B., Yang, J., & Xiao, S. (2020). Preparation and characterization of a novel Fe3O4-graphene-biochar composite for crystal violet adsorption. Science of the Total Environment, 711, 134662. https://doi.org/10.1016/j.scitotenv.2019.134662

Dudás, Z., Len, A., Ianăși, C., & Paladini, G. (2020). Structural modifications caused by the increasing MTES amount in hybrid MTES/TEOS-based silica xerogels. Materials Characterization, 167(April), 33–36. https://doi.org/10.1016/j.matchar.2020.110519

El-Dossoki, F. I., Gomaa, E. A., & Hamza, O. K. (2019). Solvation thermodynamic parameters for sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES) surfactants in aqueous and alcoholic-aqueous solvents. SN Applied Sciences, 1(8), 1–17. https://doi.org/10.1007/s42452-019-0974-6

Fabryanty, R., Valencia, C., Soetaredjo, F. E., Putro, J. N., Santoso, S. P., Kurniawan, A., Ju, Y. H., & Ismadji, S. (2017). Removal of crystal violet dye by adsorption using bentonite – alginate composite. Journal of Environmental Chemical Engineering, 5(6), 5677–5687. https://doi.org/10.1016/j.jece.2017.10.057

Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162(2–3), 616–645. https://doi.org/10.1016/j.jhazmat.2008.06.042

Ferreira, B. C. S., Teodoro, F. S., Mageste, A. B., Gil, L. F., de Freitas, R. P., & Gurgel, L. V. A. (2015). Application of a new carboxylate-functionalized sugarcane bagasse for adsorptive removal of crystal violet from aqueous solution: Kinetic, equilibrium and thermodynamic studies. Industrial Crops and Products, 65(1), 521–534. https://doi.org/10.1016/j.indcrop.2014.10.020

Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30(7), 953–971. https://doi.org/10.1016/j.envint.2004.02.001

Ghosh, K., Bar, N., Biswas, A. B., & Das, S. K. (2021). Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application. Sustainable Chemistry and Pharmacy, 19(December 2020), 100370. https://doi.org/10.1016/j.scp.2020.100370

Greluk, M., & Hubicki, Z. (2010). Kinetics, isotherm and thermodynamic studies of Reactive Black 5 removal by acid acrylic resins. Chemical Engineering Journal, 162(3), 919–926. https://doi.org/10.1016/j.cej.2010.06.043

Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal - A review. Journal of Environmental Management, 90(8), 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

Hannachi, Y., & Hafidh, A. (2020). Preparation and characterization of novel bi-functionalized xerogel for removal of methylene blue and lead ions from aqueous solution in batch and fixed-bed modes: RSM optimization, kinetic and equilibrium studies. Journal of Saudi Chemical Society, 24(7), 505–519. https://doi.org/10.1016/j.jscs.2020.05.002

Ho, Y.S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. https://doi.org/10.1021/acs.oprd.7b00090

Ho, Yuh Shan. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf

Kaewprachum, W., Wongsakulphasatch, S., Kiatkittipong, W., Striolo, A., Cheng, C. K., & Assabumrungrat, S. (2020). SDS modified mesoporous silica MCM-41 for the adsorption of Cu2+, Cd2+, Zn2+ from aqueous systems. Journal of Environmental Chemical Engineering, 8(1). https://doi.org/10.1016/j.jece.2019.102920

Karim, A. H., Jalil, A. A., Triwahyono, S., Sidik, S. M., Kamarudin, N. H. N., Jusoh, R., Jusoh, N. W. C., & Hameed, B. H. (2012). Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. Journal of Colloid and Interface Science, 386(1), 307–314. https://doi.org/10.1016/j.jcis.2012.07.043

Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060

Kaur, S., Rani, S., & Mahajan, R. K. (2015). Adsorptive removal of dye crystal violet onto low-cost carbon produced from Eichhornia plant: kinetic, equilibrium, and thermodynamic studies. Desalination and Water Treatment, 53(2), 543–556. https://doi.org/10.1080/19443994.2013.841109

Khan, N. A., Bhadra, B. N., & Jhung, S. H. (2018). Heteropoly acid-loaded ionic liquid@metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chemical Engineering Journal, 334(November 2017), 2215–2221. https://doi.org/10.1016/j.cej.2017.11.159

Khurana, I., Saxena, A., Bharti, Khurana, J. M., & Rai, P. K. (2017). Removal of Dyes Using Graphene-Based Composites: a Review. Water, Air, and Soil Pollution, 228(5). https://doi.org/10.1007/s11270-017-3361-1

Langmuir, I. (1917). The Constitution and FUndamental Properties of SOlids and Liquids. II. Liquids. 1. Journal of the American Chemical Society, 39(9), 1848–1906. https://doi.org/10.1021/ja02254a006

Lee, Y. S., Jang, W., Koo, H. Y., & Choi, W. S. (2015). Facile synthesis of mesoporous SiO2 nanoparticles using the mobility differences of etchants. RSC Advances, 5(33), 26223–26230. https://doi.org/10.1039/c5ra01154j

Li, Y., Wang, S., Shen, Z., Li, X., Zhou, Q., Sun, Y., Wang, T., Liu, Y., & Gao, Q. (2020). Gradient Adsorption of Methylene Blue and Crystal Violet onto Compound Microporous Silica from Aqueous Medium. ACS Omega, 5(43), 28382–28392. https://doi.org/10.1021/acsomega.0c04437

Matsui, K., Nakazawa, T., & Morisaki, H. (1991). Micellar formation of sodium dodecyl sulfate in sol-gel glasses probed by pyrene fluorescence. Journal of Physical Chemistry, 95(2), 976–979. https://doi.org/10.1021/j100155a088

Mittal, A., Mittal, J., Malviya, A., Kaur, D., & Gupta, V. K. (2010). Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science, 343(2), 463–473. https://doi.org/10.1016/j.jcis.2009.11.060

Nagappan, S., Jeon, Y., Park, S. S., & Ha, C. S. (2019). Hexadecyltrimethylammonium Bromide Surfactant-Supported Silica Material for the Effective Adsorption of Metanil Yellow Dye. ACS Omega, 4(5), 8548–8558. https://doi.org/10.1021/acsomega.9b00533

Nascimento, R. F. do, Lima, A. C. A. de, Vidal, C. B., Melo, D. de Q., & Raulino, G. S. C. (2014). Adsorção: Aspectos teóricos e aplicações ambientais. In Imprensa Universitária da Universidade Federal do Ceará (UFC).

Nordin, M. N., Asari, N., Mahaidin, A. A., Sha, K. M., & Aziz, N. M. A. N. A. (2016). Immobilization of Bromocresol Purple in Inorganic-Organic Sol-Gel Thin Film with Presence of Anionic and Non-ionic Surfactants. Procedia Chemistry, 19, 275–282. https://doi.org/10.1016/j.proche.2016.03.007

Olívio, P. H. de P., Buzato, G. V., & Souza, A. L. de. (2021). Influência da catálise ácida e básica na síntese de xerogéis de sílica para a adsorção de azul de metileno em meio aquoso Influence of acidic and basic catalysis on the synthesis of silica xerogels for the adsorption of methylene blue in aqueous medium In. Research, Society and Development, 10(15), e132101522524.

Parida, S. K., Dash, S., Patel, S., & Mishra, B. K. (2006). Adsorption of organic molecules on silica surface. Advances in Colloid and Interface Science, 121(1–3), 77–110. https://doi.org/10.1016/j.cis.2006.05.028

Price, P. M., Clark, J. H., & Macquarrie, D. J. (2008). Modi fi ed silicas for clean technology. Journal of the Chemical Society Dalton Transactions, 2, 101–110.

Rabie, A. M., Abd El-Salam, H. M., Betiha, M. A., El-Maghrabi, H. H., & Aman, D. (2019). Mercury removal from aqueous solution via functionalized mesoporous silica nanoparticles with the amine compound. Egyptian Journal of Petroleum, 28(3), 289–296. https://doi.org/10.1016/j.ejpe.2019.07.003

Rocha, L. C., De Souza, A. L., Rodrigues Filho, U. P., Campana Filho, S. P., Sette, L. D., & Porto, A. L. M. (2012). Immobilization of marine fungi on silica gel, silica xerogel and chitosan for biocatalytic reduction of ketones. Journal of Molecular Catalysis B: Enzymatic. https://doi.org/10.1016/j.molcatb.2012.05.025

Roik, N. V., Belyakova, L. A., Dziazko, M. O., & Oranska, O. I. (2020). Influence of azo dye additives on structural ordering of mesoporous silicas. Applied Nanoscience (Switzerland), 10(8), 2547–2556. https://doi.org/10.1007/s13204-019-01013-5

Saadi, R., Saadi, Z., Fazaeli, R., & Fard, N. E. (2015). Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean Journal of Chemical Engineering, 32(5), 787–799. https://doi.org/10.1007/s11814-015-0053-7

Sharma, M., Jain, P., Mishra, A., Mehta, A., Choudhury, D., Hazra, S., & Basu, S. (2017). Variation of surface area of silica monoliths by controlling ionic character/chain length of surfactants and polymers. Materials Letters, 194, 213–216. https://doi.org/10.1016/j.matlet.2017.02.074

Sulyman, M., Kucinska-Lipka, J., Sienkiewicz, M., & Gierak, A. (2021). Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: Isotherm, kinetics, and thermodynamic studies. Arabian Journal of Chemistry, 14(5), 103115. https://doi.org/10.1016/j.arabjc.2021.103115

Sulyman, M., Namiesnik, J., & Gierak, A. (2014). Utilization of new activated carbon derived from oak leaves for removal of crystal violet from aqueous solution. Polish Journal of Environmental Studies, 23(6), 2223–2232. https://doi.org/10.15244/pjoes/26764

Sun, L., Hu, S., Sun, H., Guo, H., Zhu, H., Liu, M., & Sun, H. (2015). Malachite green adsorption onto Fe3O4@SiO2-NH2: Isotherms, kinetic and process optimization. RSC Advances, 5(16), 11837–11844. https://doi.org/10.1039/c4ra13402h

Sun, P., Hui, C., Khan, R. A., Du, J., Zhang, Q., & Zhao, Y. H. (2015). Efficient removal of crystal violet using Fe3O4-coated biochar: The role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Scientific Reports, 5(March), 1–12. https://doi.org/10.1038/srep12638

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117

Uddin, M. K., Mashkoor, F., AlArifi, I. M., & Nasar, A. (2021). Simple one-step synthesis process of novel MoS2@bentonite magnetic nanocomposite for efficient adsorption of crystal violet from aqueous solution. Materials Research Bulletin, 139(November 2020), 111279. https://doi.org/10.1016/j.materresbull.2021.111279

Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279

Wu, Z., Ahn, I. S., Lee, C. H., Kim, J. H., Shul, Y. G., & Lee, K. (2004). Enhancing the organic dye adsorption on porous xerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 240(1–3), 157–164. https://doi.org/10.1016/j.colsurfa.2004.04.045

Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002

Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. In International Journal of Environmental Science and Technology (Vol. 16, Issue 2). Springer Berlin Heidelberg. https://doi.org/10.1007/s13762-018-2130-z

Downloads

Publicado

21/12/2021

Como Citar

BUZATO, G. V.; OLÍVIO, P. H. de P.; SOUZA, A. L. de . Efeito da modificação de um xerogel de sílica por dodecilsulfato de sódio para a adsorção do corante violeta cristal em meio aquoso . Research, Society and Development, [S. l.], v. 10, n. 17, p. e78101724470, 2021. DOI: 10.33448/rsd-v10i17.24470. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24470. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Exatas e da Terra