Prospecção científica e tecnológica de quercetina: uso de espécies de Malpighia L. (acerola) como potencial para o tratamento de COVID-19

Autores

DOI:

https://doi.org/10.33448/rsd-v11i1.24715

Palavras-chave:

Acerola; Antiviral; Farmacologia.

Resumo

Quercetina é um flavonoide presente em muitos vegetais, como espécies de Malpighia L. (acerola), e tem mostrado muitas atividades farmacológicas, dentre elas o potencial antiviral e anti-inflamatório utilizado no tratamento de diversas viroses, por exemplo a COVID-19, ressaltando sua importância econômica e medicinal. Objetiva-se realizar uma prospecção científica e tecnológica acerca do flavonoide quercetina encontrado na acerola, a fim de destacar o número de publicações e de depósito de patentes em bancos de dados internacionais e evidenciar as propriedades farmacológicas e eficácia desses compostos no tratamento a COVID-19. Realizou-se uma prospecção científica e tecnológica em bases de dados de artigos e patentes internacionais sobre acerola, quercetina e COVID-19. O país com maior número de publicações foi a China (n=25), e as publicações tiveram início no ano de 1967, com distribuição maior para as áreas de Medicina e Odontologia (n=78). Enquanto para a prospecção tecnológica observou-se que o Japão (n=367) teve mais patentes depositadas e os depósitos começaram no ano de 2014, destacando-se A61K como a CIP mais frequente, relacionada à saúde. O Brasil não se destacou nesta pesquisa, pois a demanda tecnológica não vem sendo estimulada, o que demonstra preocupação com o país.

Referências

Almeida, R. F. (2020). Malpighia in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB617494.

Athira Nair, D., & James, T. J. (2020). Computational screening of phytocompounds from Moringa oleifera leaf as potential inhibitors of SARS-CoV-2 Mpro. Research Square.

Bachmetov, L., Gal‐Tanamy, M., Shapira, A., Vorobeychik, M., Giterman‐Galam, T., Sathiyamoorthy, P., Golan-Goldhirsh, A., Benhar, I., Tur-Kaspa, R., & Zemel, R. (2012). Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. Journal of viral hepatitis, 19(2), e81-e88.

Badshah, S. L., Faisal, S., Muhammad, A., Poulson, B. G., Emwas, A. H., & Jaremko, M. (2021). Antiviral activities of flavonoids. Biomedicine & Pharmacotherapy, 140, 111596.

Batiha, G. E. S., Beshbishy, A. M., Ikram, M., Mulla, Z. S., El-Hack, M. E. A., Taha, A. E., Algammal, A. M., & Elewa, Y. H. A. (2020). The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods, 9(3), 374.

Behling, E. V., Sendão, M. C., Francescato, H. D. C., Antunes, L. M. G., & Bianchi, M. D. L. (2008). Flavonóide quercetina: aspectos gerais e ações biológicas. Alimentos e Nutrição Araraquara, 15(3), 285-292.

Belwal, T., Devkota, H. P., Hassan, H. A., Ahluwalia, S., Ramadan, M. F., Mocan, A., & Atanasov, A. G. (2018). Phytopharmacology of Acerola (Malpighia spp.) and its potential as functional food. Trends in food science & technology, 74, 99-106.

Brandelli, C. L. C. Metabolismo vegetal. In: da Cruz Monteiro, S., & Brandelli, C. L. C. (2017). Farmacobotânica: Aspectos Teóricos e Aplicação. Artmed Editora.

Brandelli, C. L. C. & Vieira, P. B. Substâncias bioativas. In: da Cruz Monteiro, S., & Brandelli, C. L. C. (2017). Farmacobotânica: Aspectos Teóricos e Aplicação. Artmed Editora.

Cavalcante, M. B., Cavalcante, C. T. D. M. B., Braga, A. C. S., Andrade, D. A., Montenegro, M. A., Santos, P. A. N., Motoyama, P. V. P., Rocha, M. G., Dib, L. A., & Júnior, E. A. (2021). COVID-19 Treatment: Drug Safety Prior to Conception and During Pregnancy and Breastfeeding. Geburtshilfe und Frauenheilkunde, 81(01), 46-60.

Das, A., Pandita, D., Jain, G. K., Agarwal, P., Grewal, A. S., Khar, R. K., & Lather, V. (2021). Role of phytoconstituents in the management of COVID-19. Chemico-biological interactions, 109449.

Davis, C. C., & Anderson, W. R. (2010). A complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. American Journal of Botany, 97(12), 2031-2048.

Carvalho Vieira, T., Nascimento, M. G. P., Bittencourt, C. B., & de Andrade, I. M. (2020). Prospecção Científica e Tecnológica de Malpighia emarginata DC. (Malpighiaceae): espécie economicamente importante do Brasil. Cadernos de Prospecção, 13(3), 862.

França, E., & Vasconcellos, A. G. (2019). Patentes de fitoterápicos no Brasil: uma análise do andamento dos pedidos no período de 1995-2017. Cadernos de Ciência & Tecnologia, 35(3), 329-359.

Dexiao, Y., Yujing, L., Jinlin, Z., Yucheng, L., Huiling, L., & Cheng, D. (2020). Patent Application Nº. CN111773282A.

De Moura, A. M. M., Junior, R. F. G., Magnus, A. P. M., Santos, F. B., & Scartassini, V. B. (2019). Panorama das patentes depositadas no Brasil: uma análise a partir dos maiores depositantes de patentes na base Derwent Innovations Index. Brazilian Journal of Information Science: research trends, 13(2), 59-68.

Oliveira, S. D., Araújo, C. M., Borges, G. D. S. C., dos Santos Lima, M., Viera, V. B., Garcia, E. F., de Souza, E. L., & de Oliveira, M. E. G. (2020). Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata DC) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. LWT, 134, 110200.

Fanunza, E., Iampietro, M., Distinto, S., Corona, A., Quartu, M., Maccioni, E., Horvat, B., & Tramontano, E. (2020). Quercetin blocks Ebola virus infection by counteracting the VP24 interferon-inhibitory function. Antimicrobial agents and chemotherapy, 64(7), e00530-20.

Gil, A. C. (2008). Como elaborar projetos de pesquisa. 4. ed. São Paulo: Atlas.

Girardelo, J. R., Munari, E. L., Dallorsoleta, J. C., Cechinel, G., Goetten, A. L., Sales, L. R., Reginatto, F. H., Chaves, V. C., Smaniotto, F. A., Somacal, S., Emanuelli, T., Benech, J. C., Soldi, C., Winter, E., & Conterato, G. M. M. (2020). Bioactive compounds, antioxidant capacity and antitumoral activity of ethanolic extracts from fruits and seeds of Eugenia involucrata DC. Food Research International, 137, 109615.

Gomes, A. C. A., da Costa Lima, M., de Oliveira, K. Á. R., dos Santos Lima, M., Magnani, M., Câmara, M. P. S., & de Souza, E. L. (2020). Coatings with chitosan and phenolic-rich extract from acerola (Malpighia emarginata DC) or jabuticaba (Plinia jaboticaba (Vell.) Berg) processing by-product to control rot caused by Lasiodiplodia spp. in papaya (Carica papaya L.) fruit. International Journal of Food Microbiology, 331, 108694.

Günalan, E., Cebioğlu, İ. K., & Çonak, Ö. (2021). The Popularity of the Biologically-Based Therapies During Coronavirus Pandemic Among the Google Users in the USA, UK, Germany, Italy and France. Complementary Therapies in Medicine, 58, 102682.

Hazan, S. (2021). U.S. Patent Application No. 16/953,674.

Kumar, D., Malviya, R., & Sharma, P. K. (2020). Corona virus: a review of COVID-19. EJMO, 4(1), 8-25.

Leyva, J. F. G., Zazueta-Avitia, A., Burboa-Meza, C. Y., Ramírez-Alvarado, D., Flores-Martínez, H., & Segura-Castruita, M. Á. (2021). Caracterización de frutos tomate (Solanum lycopersicum) en plantas colonizadas por el hongo micorrízico arbuscular Rhizopagus irregularis en condiciones de estrés salino. Acta Universitaria, 31, 1-11.

Lu, X. I. A., Yujing, S. H. I., Jie, S. U., Friedemann, T., Zhenggang, T. A. O., Lu, Y., Ling, Y., Lv, Y., Zhao, R., Geng, Z., Cui, X., Lu, H., & Schröder, S. (2021). Shufeng Jiedu, a promising herbal therapy for moderate COVID-19: Antiviral and anti-inflammatory properties, pathways of bioactive compounds, and a clinical real-world pragmatic study. Phytomedicine, 85, 153390.

Martínez, L., Jongberg, S., Ros, G., Skibsted, L. H., & Nieto, G. (2020). Plant derived ingredients rich in nitrates or phenolics for protection of pork against protein oxidation. Food Research International, 129, 108789.

Menezes, D. F. N. (2020). Bio e nanotecnologia: análise da convergência tecnológica pelas patentes. Revista Jurídica Luso-Brasileira, 6(5), 557-578.

Moura, C. F., Oliveira, L. D. S., de Souza, K. O., da Franca, L. G., Ribeiro, L. B., de Souza, P. A., & de Miranda, M. R. (2018). Acerola—Malpighia emarginata. In Exotic fruits (pp. 7-14). Academic Press.

Morais, S. M. P. D., & Garcia, J. C. R. (2013). Inovação tecnológica em publicações brasileiras da ciência da informação.

Morais-Braga, M. F., Carneiro, J. N., Machado, A. J., Sales, D. L., Dos Santos, A. T., Boligon, A. A., Athayde, M. L., Menezes, I. R. A., Souza, D. S. L., Costa, J. G. M., & Coutinho, H. D. (2017). Phenolic composition and medicinal usage of Psidium guajava Linn.: Antifungal activity or inhibition of virulence? Saudi Journal of Biological Sciences, 24(2), 302-313.

OMS – Organização Mundial da Saúde. (2018). Global Innovation Index 2018. https://www.wipo.int/pressroom/en/ar ticles/2018/article_0005.html.

CNN BRASIL- Cable News Network. (2021). https://www.cnnbrasil.com.br/saude/entenda-as-recomendacoes-das-instituicoes-de-saude-contra-o-uso-de-cloroquina/

Pinto, M., Benfeito, S., Fernandes, C., & Borges, F. (2020). Antioxidant therapy, oxidative stress, and blood-brain barrier: the road of dietary antioxidants. In Oxidative Stress and Dietary Antioxidants in Neurological Diseases (pp. 125-141). Academic Press.

Prasansuklab, A., Theerasri, A., Rangsinth, P., Sillapachaiyaporn, C., Chuchawankul, S., & Tencomnao, T. (2020). Anti-COVID-19 drug candidates: a review on potential biological activities of natural products in the management of new Coronavirus infection. Journal of traditional and complementary medicine.

Quijano Pérez, J. E., Segura Cobos, D., García Pineda, M., Omaña Molina, M. A., & Guzmán Hernández, E. A. (2020). Efecto hipoglucemiante y nefroprotector de Olea europea, Moringa oleifera y Chicorium intibus var en un modelo experimental de diabetes mellitus. https://revistatediq. azc. uam. mx/Docs/Revista_TeDIQ_2020. pdf.

Rodrigues, L. M., Romanini, E. B., Silva, E., Pilau, E. J., da Costa, S. C., & Madrona, G. S. (2020). Camu-camu bioactive compounds extraction by ecofriendly sequential processes (ultrasound assisted extraction and reverse osmosis). Ultrasonics sonochemistry, 64, 105017.

Saeedi-Boroujeni, A., & Mahmoudian-Sani, M. R. (2021). Anti-inflammatory potential of Quercetin in COVID-19 treatment. Journal of Inflammation, 18(1), 1-9.

Serafini, M. R., Quintans, J. D. S. S., Antoniolli, Â. R., dos Santos, M. R. V., & Quintans-Junior, L. J. (2012). Mapeamento de tecnologias patenteáveis com o uso da hecogenina. Revista geintec-gestão inovação e tecnologias, 2(5), 427-435.

Seraglio, S. K. T., Schulz, M., Nehring, P., Della Betta, F., Valese, A. C., Daguer, H., Gonzaga, L. V., Fett, R., & Costa, A. C. O. (2018). Determinação de compostos fenólicos por LC-MS/MS e capacidade antioxidante de acerola em três estádios de maturação comestíveis. In Revista do Congresso Sul Brasileiro de Engenharia de Alimentos, 4 (1).

Schreckinger, M. E., Lotton, J., Lila, M. A., & de Mejia, E. G. (2010). Berries from South America: a comprehensive review on chemistry, health potential, and commercialization. Journal of medicinal food, 13(2), 233-246.

Shin, J. A., Oh, S., & Jeong, J. M. (2021). The potential of BEN815 as an anti-inflammatory, antiviral and antioxidant agent for the treatment of COVID-19. Phytomedicine Plus, 1(4), 100058.

Wu, W., Li, R., Li, X., He, J., Jiang, S., Liu, S., & Yang, J. (2016). Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses, 8(1), 6.

Xu, M., Shen, C., Zheng, H., Xu, Y., Xue, C., Zhu, B., & Hu, J. (2020). Metabolomic analysis of acerola cherry (Malpighia emarginata) fruit during ripening development via UPLC-Q-TOF and contribution to the antioxidant activity. Food Research International, 130, 108915.

Zhang, J. R., Trossat-Magnin, C., Bathany, K., Delrot, S., & Chaudière, J. (2019). Transformação oxidativa de leucociaanidina por anthocyanidin synthase de Vitis vinifera leva apenas à quercetina. Revista de química agrícola e alimentar, 67(13), 3595-3604.

Zandi, K., Teoh, B. T., Sam, S. S., Wong, P. F., Mustafa, M. R., & AbuBakar, S. (2011). Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virology journal, 8(1), 1-11.

Zou, M., Liu, H., Li, J., Yao, X., Chen, Y., Ke, C., & Liu, S. (2020). Structure-activity relationship of flavonoid bifunctional inhibitors against Zika virus infection. Biochemical pharmacology, 177, 113962.

Zuanazzi, J. A. S., Montanha, J. A., & Zucolotto, S. M. Flavonoides. In: Simões, C. M. O., Schenkel, E. P., de Mello, J. C. P., Mentz, L. A., & Petrovick, P. R. (2016). Farmacognosia: do produto natural ao medicamento. Artmed Editora.

Downloads

Publicado

04/01/2022

Como Citar

MACÊDO, M. do A. de M. .; SOUZA, R. T. B. .; COSTA, D. N. .; SANTOS , J. O. dos .; REIS, R. B. dos .; SILVA, L. L. da .; ANDRADE, I. M. de . Prospecção científica e tecnológica de quercetina: uso de espécies de Malpighia L. (acerola) como potencial para o tratamento de COVID-19. Research, Society and Development, [S. l.], v. 11, n. 1, p. e19711124715, 2022. DOI: 10.33448/rsd-v11i1.24715. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24715. Acesso em: 17 jul. 2024.

Edição

Seção

Artigos de Revisão