Uso do lodo de tratamento de Água em Argamassa Autoadensável (AAA)

Autores

DOI:

https://doi.org/10.33448/rsd-v11i2.25112

Palavras-chave:

Argamassa Auto-Compactante (SCM); Lamas de Tratamento de Água (WTS); Construção de edifícios.

Resumo

Este artigo visa analisar as características da argamassa auto-compactante (SCM) com a substituição parcial do cimento por lamas de tratamento de água (WTS).  Esta substituição visa contribuir para minimizar a degradação ambiental resultante da produção de materiais utilizados na construção e dar um destino sustentável às lamas geradas nas estações de tratamento de água. Neste estudo, foi analisada a substituição de cimento em 10 e 20% para a ETAR da Estação de Tratamento de Água de Itajubá, em Minas Gerais. O resíduo foi recolhido, filtrado, seco e moído, para que as análises granulométricas pudessem ser realizadas e os dados inseridos no software de embalagem de partículas EMMA. Relativamente à argamassa, as propriedades no estado fresco foram verificadas através dos testes de espalhamento e fluxo, em que todas as misturas puderam ser definidas como auto-compactantes. Em relação às propriedades mecânicas, foram realizados ensaios de compressão, tração flexural e módulo de elasticidade após 28 dias de cura. Nas misturas contendo WTS, as resistências mecânicas e o módulo de elasticidade diminuíram. Além disso, no estado endurecido, foi observada uma redução da massa específica e um aumento do índice de vazios e absorção nos traços contendo WTS. Os resultados indicam que o WTS só poderia ser utilizado para funções não estruturais. No entanto, os resultados obtidos reforçam a necessidade de mais estudos sobre o assunto, mantendo a possibilidade de utilização do WTS na construção civil.

Referências

ABNT. (2004). NBR 10004: Resíduos sólidos – Classificação (Solid waste – Classification). In Associação Brasileira de Normas Técnicas: Vol. 2° Edição (Issue 10004, pp. 1–71).

ABNT NBR 15900. (2009). NBR 15900-1: Água para amassamento do concreto Parte 1: Requisitos. Abnt, 237.

Ahmad, T., Ahmad, K., & Alam, M. (2016). Sustainable management of water treatment sludge through 3’R’ concept. Journal of Cleaner Production, 124, 1–13. https://doi.org/10.1016/j.jclepro.2016.02.073

Araújo, F. C., Scalize, P. S., Albuquerque, A., & Angelim, R. R. (2015). Caracterização física do resíduo de uma estação de tratamento de água para sua utilização em materiais de construção. Ceramica, 61(360), 450–456. https://doi.org/10.1590/0366-69132015613601931

Babatunde, A., & Zhao, Y. (2007). Constructive Approaches Toward Water Treatment Works Sludge Management: An International Review of Beneficial Reuses. Critical Reviews in Environmental Science and Technology, 37, 129–164. https://doi.org/10.1080/10643380600776239

Brachini, M. L. O., Santos, V. C., Gonçalves, P. C., Mirian, L. N. M., & Oliveira, V. D. (2020). Utilização do lodo de tratamento de água em argamassas auto adensáveis Use of water treatment sludge in self-compacting mortars Resumo. 1, 1–14.

Buselatto, D. M., Wenzel, M. C., Da Rocha, G. H., Webber, J., Da Silva, S. R., & De Oliveira Andrade, J. J. (2019). Use of water treatment sludge (WTS) as fine aggregate in concretes: Evaluation of physical-mechanical properties. Revista Materia, 24(1). https://doi.org/10.1590/s1517-707620190001.0645

Câmara dos Deputados. (2017). Política Nacional de Resíduos Sólidos. (3a ed.), Câmara dos Deputados, Edições Câmara.

Comminal, R., Leal da Silva, W. R., Andersen, T. J., Stang, H., & Spangenberg, J. (2020). Modelling of 3D concrete printing based on computational fluid dynamics. Cement and Concrete Research, 138, 106256. https://doi.org/https://doi.org/10.1016/j.cemconres.2020.106256

de Oliveira Andrade, J. J., Wenzel, M. C., da Rocha, G. H., & da Silva, S. R. (2018). Performance of rendering mortars containing sludge from water treatment plants as fine recycled aggregate. Journal of Cleaner Production, 192, 159–168. https://doi.org/10.1016/j.jclepro.2018.04.246

Dinakar, P. (2012). Design of self-compacting concrete with fly ash. Magazine of Concrete Research, 64(5), 401–409. https://doi.org/10.1680/macr.10.00167

Eaton, A. D; Clesceri, L. S; Rice, E. W.; Greenberg, A. E. (2007). Standart methods for the examination of water and wastewater (23rd ed.).

Gomes, P. C. C.; Barros, A. R. (2009). Métodos de Dosagem de Concreto Autoadensável. (Pini (ed.); 1°).

Hoppen, C., Portella, K. F., Joukoski, A., Baron, O., Franck, R., Sales, A., Andreoli, C. V, Paulon, V. A., Carlos, S., & Campinas, U. E. De. (2005). Co-disposição de lodo centrifugado de Estação de Tratamento de Água ( ETA ) em matriz de concreto : método alternativo de preservação ambiental ( Disposal of centrifuged sludge from Water Treatment Plant ( WTP ) in concrete matrix : an alternative method. Cerâmica, 51, 85–95. https://www.scielo.br/scielo.php?script=sci_issuetoc&pid=0366-691320050002&lng=pt

Katayama, V. T., Montes, C. P., Ferraz, T. H., & Morita, D. M. (2015). Quantificação da produção de lodo de estações de tratamento de água de ciclo completo: Uma análise crítica. Engenharia Sanitaria e Ambiental, 20(4), 559–569. https://doi.org/10.1590/S1413-41522015020040105046

Liu, Y., Zhuge, Y., Chow, C. W. K., Keegan, A., Li, D., Pham, P. N., Huang, J., & Siddique, R. (2020). Utilization of drinking water treatment sludge in concrete paving blocks: Microstructural analysis, durability and leaching properties. Journal of Environmental Management, 262, 110352. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110352

Medina, E. A. (2011). Pozolanicidade do metacaulim em sistemas binários com Cimento Portland e hidróxido de cálcio. (Dissertação de Mestrado). Universidade de São Paulo., 134.

Mehta, P. K.; & Monteiro, P. J. M. (2008). Concreto: microestrutura, propriedades e materiais (Ibracon (ed.)).

Ministério do Desenvolvimento Regional. (2020). Sistema Nacional de Informações sobre Saneamento: Diagnóstico dos serviços de água e esgoto - 2019. Sistema Nacional de Informações Sobre Saneamento - SNIS, 44(8), 1689–1699.

Okamura, H., & Ouchi, M. (2003). Self-Compacting Concrete. Journal of Advanced Concrete Technology, 1(1), 5–15. https://doi.org/10.3151/jact.1.5

Ramirez, K. G., Possan, E., Dezen, B. G. dos S., & Colombo, M. (2017). Potential uses of waste sludge in concrete production. Management of Environmental Quality: An International Journal, 28(6), 821–838. https://doi.org/10.1108/MEQ-09-2015-0178

Ribeiro, R. F. (2012). Estudo De Dosagem De Lodo De Estação De Tratamento De Água ( Eta ) Em Argamassa. Trabalho de Conclusão de Curso Em Engenharia Ambiental. Universidade Tecnológica Federal Do Paraná., 1–61.

Ribeiro, V. A. dos S. R., Werdine, D., Barbosa, L. F., Oliveira, A. F., Barbosa, A. M., Silva, L. R. R., & Ribeiro, L. H. (2021). Investigação das propriedades físicas e mecânicas do concreto convencional com substituição parcial da areia pelas fibras de bambu Investigation of the physical and mechanical properties of conventional concrete with partial replacement of sand by bamboo. 2021(2014), 1–11.

Ribeiro, V. A. dos S., Werdine, D., Barbosa, L. F., Oliveira, A. F., & Santana, L. P. (2021). Investigação das propriedades do concreto convencional com adição de resíduos de pneu e metacaulim. Research, Society and Development, 10(5), e2410514463. https://doi.org/10.33448/rsd-v10i5.14463

Rodrigues, F., Valle, S., Cesar, P., Gabriela, M., & Ranieri, A. (2022). Use of recycled aggregates from civil construction in self- compacting mortar. 15(1), 1–13.

Sales, A.; & Souza, F. R. de. (2005). Concretos e Argamassas Reciclados com Adição Conjunta e Exclusiva de LETAs e RCDs. CBECIMAT.

Santos, Géssica Zila Batista dos. (2016). Argamassa geopolimérica à base de lodo de estação de tratamento de água calcinado. Dissertação de Mestrado Em Engenharia Civil. Universidade Federal Do Amazonas, 115.

Santos, Gessica Zila Batista dos, Melo Filho, J. de A., & Manzato, L. (2018). Perspectivas de aplicações tecnológicas de lodo gerado no processo de tratamento de água dos rios Negro e Solimões. Matéria (Rio de Janeiro), 23(3). https://doi.org/10.1590/s1517-707620180003.0501

Silva, L. R. R. da, Silva, J. A. da, Francisco, M. B., Ribeiro, V. A., de Souza, M. H. B., Capellato, P., Souza, M. A., dos Santos, V., Cesar Gonçalves, P., & de Lourdes Noronha Motta Melo, M. (2020). Polymeric Waste from Recycling Refrigerators as an Aggregate for Self-Compacting Concrete. Sustainability, 12(20). https://doi.org/10.3390/su12208731

Sogancioglu, M., Yel, E., & Yilmaz, U. (2013). Utilization of andesite processing wastewater treatment sludge as admixture in concrete mix. Construction and Building Materials, 46, 150–155. https://doi.org/10.1016/j.conbuildmat.2013.04.035

Souza, M. H. B. de, Gonçalves, P. C., Silva, L. R. R., Melo, M. de L. N. M., & Santos, V. C. dos. (2021). Use of superabsorbent polymers in cement-based compounds: a bibliometric analysis. Research, Society and Development, 10(14), e171101421818. https://doi.org/10.33448/rsd-v10i14.21818

Tafarel, N. F., Macioski, G., De Carvalho, K. Q., Nagalli, A., De Freitas, D. C., & Passig, F. H. (2016). Avaliação das propriedades do concreto devido à incorporação de lodo de estação de tratamento de água. Revista Materia, 21(4), 974–986. https://doi.org/10.1590/S1517-707620160004.0090

Yagüe, A., Valls, S., Vázquez, E., & Albareda, F. (2005). Durability of concrete with addition of dry sludge from waste water treatment plants. Cement and Concrete Research, 35, 1064–1073. https://doi.org/10.1016/j.cemconres.2004.07.043

Downloads

Publicado

17/01/2022

Como Citar

SILVA, A. P. T. da; SILVA, L. R. R. da .; RIBEIRO, V. A. dos S. .; MELO, M. de L. N. M. .; GONÇALVES, P. C. .; MARTINS, M. V. L. .; SANTOS, V. C. dos .; SOUZA, M. H. B. de . Uso do lodo de tratamento de Água em Argamassa Autoadensável (AAA). Research, Society and Development, [S. l.], v. 11, n. 2, p. e0111225112, 2022. DOI: 10.33448/rsd-v11i2.25112. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25112. Acesso em: 22 dez. 2024.

Edição

Seção

Engenharias