Revisão sobre o papel da suplementação antioxidante contra o estresse oxidativo: uma abordagem humana e animal sobre a fertilidade masculina
DOI:
https://doi.org/10.33448/rsd-v11i1.25191Palavras-chave:
Reprodução Humana; Espécies Reativas de Oxigênio; Espermatozoides; Roedores; TRA.Resumo
A infertilidade masculina é um fator importante entre as causas multifatoriais da infertilidade do casal, sendo o estresse oxidativo uma das principais fontes relacionadas. O espermatozoide é uma célula especializada extremamente suscetível ao estresse. Para entender e mitigar esse evento, muitos estudos têm usado diferentes antioxidantes, suplementando via oral ou in vitro, na tentativa de melhorar a qualidade e função desses gametas. Considerando a extensa literatura disponível sobre abordagens e tentativas de resolver questões de infertilidade masculina, o objetivo desta revisão é avaliar os efeitos da suplementação com antioxidantes sobre os espermatozoides, tanto em humanos quanto em modelos experimentais com animais. Esta revisão selecionou dados originais do PubMed. As palavras-chave utilizadas foram: antioxidant, sperm, male fertility, antioxidant supplementation, male infertility; e o termo “rodents” foi adicionado aos descritores “antioxidant” e “male fertility”. Apenas estudos publicados em revistas indexadas, em inglês, entre 2015 e 2019 foram incluídos. Esta revisão envolve i) espermatozoides humanos e ii) espermatozoides de roedores. Para a abordagem humana, a busca recuperou 496 artigos e 80 foram incluídos, entre os quais 28 estudos eram de suplementação antioxidante in vitro, 19 envolviam suplementação antioxidante oral e os 33 restantes diziam respeito à quantificação de oxidantes e antioxidantes já presentes nas amostras seminais. Para a abordagem animal, 152 artigos foram recuperados e 52 foram incluídos: 3 de varicocele, 11 de diabetes, 10 de drogas terapêuticas, 3 de exercícios físicos, 10 de exposição ambiental e 3 de estresse térmico. Os demais estudos envolveram o status do estresse oxidativo em modelos experimentais. O uso de antioxidantes em técnicas de reprodução assistida vem aumentando na tentativa de obter gametas e embriões melhores. Vitaminas C, B e E, selênio e zinco são os antioxidantes mais comumente usados, com notáveis evidências na melhoria das condições seminais fisiopatológicas.
Referências
Adami, L. N. G., Belardin, L. B., Lima, B. T., Jeremias, J. T., Antoniassi, M. P., Okada, F. K., & Bertolla, R. P. (2018). Effect of in vitro vitamin E (alpha-tocopherol) supplementation in human spermatozoon submitted to oxidative stress. Andrologia. https://doi.org/10.1111/and.12959
Adami, L. N. G., de Lima, B. T., Andretta, R. R., Bertolla, R. P., & Nichi, M. (2019). Carnosine treatment during human semen processing by discontinuous density gradient. Andrologia, e13497. https://doi.org/10.1111/and.13497
Agarwal, A., Ahmad, G., & Sharma, R. (2015). Reference values of reactive oxygen species in seminal ejaculates using chemiluminescence assay. Journal of Assisted Reproduction and Genetics, 32(12), 1721–1729. https://doi.org/10.1007/s10815-015-0584-1
Aguirre-Arias, M. V., Velarde, V., & Moreno, R. D. (2017). Effects of ascorbic acid on spermatogenesis and sperm parameters in diabetic rats. Cell and Tissue Research, 370(2), 305–317. https://doi.org/10.1007/s00441-017-2660-6
Ahelik, A., Mändar, R., Korrovits, P., Karits, P., Talving, E., Rosenstein, K., Jaagura, M., Salumets, A., & Kullisaar, T. (2015). Systemic oxidative stress could predict assisted reproductive technique outcome. Journal of Assisted Reproduction and Genetics, 32(5), 699–704. https://doi.org/10.1007/s10815-015-0466-6
Ahmadi, M. H., Mirsalehian, A., Sadighi Gilani, M. A., Bahador, A., & Talebi, M. (2017). Asymptomatic Infection With Mycoplasma hominis Negatively Affects Semen Parameters and Leads to Male Infertility as Confirmed by Improved Semen Parameters After Antibiotic Treatment. Urology, 100, 97–102. https://doi.org/10.1016/j.urology.2016.11.018
Aitken, R. J. (1994). A free radical theory of male infertility. Reproduction, Fertility, and Development, 6(1), 19–23; discussion 23-24.
Aitken, R. J., & Clarkson, J. S. (1988). Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. Journal of Andrology, 9(6), 367–376.
Ajina, T., Sallem, A., Haouas, Z., & Mehdi, M. (2017). Total antioxidant status and lipid peroxidation with and without in vitro zinc supplementation in infertile men. Andrologia, 49(7). https://doi.org/10.1111/and.12703
Akomolafe, S. F., Akinyemi, A. J., Oboh, G., Oyeleye, S. I., Ajayi, O. B., Omonisi, A. E., Owolabi, F. L., Atoyebi, D. A., Ige, F. O., & Atoki, V. A. (2018). Co-administration of caffeine and caffeic acid alters some key enzymes linked with reproductive function in male rats. Andrologia, 50(2). https://doi.org/10.1111/and.12839
Akomolafe, S. F., & Oboh, G. (2017). Walnut leaf extract acts as a fertility agent in male Wistar albino rats—A search for herbal male fertility enhancer. Journal of Complementary & Integrative Medicine, 15(2). https://doi.org/10.1515/jcim-2017-0076
Aksu, E. H., Kandemir, F. M., Özkaraca, M., Ömür, A. D., Küçükler, S., & Çomaklı, S. (2017). Rutin ameliorates cisplatin-induced reproductive damage via suppression of oxidative stress and apoptosis in adult male rats. Andrologia, 49(1). https://doi.org/10.1111/and.12593
Al-Alami, Z. M., Shraideh, Z. A., & Taha, M. O. (2017). Rosmarinic acid reverses the effects of metronidazole-induced infertility in male albino rats. Reproduction, Fertility, and Development, 29(10), 1910–1920. https://doi.org/10.1071/RD16174
Alizadeh, F., Javadi, M., Karami, A. A., Gholaminejad, F., Kavianpour, M., & Haghighian, H. K. (2018). Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: A randomized clinical trial. Phytotherapy Research: PTR, 32(3), 514–521. https://doi.org/10.1002/ptr.5998
Alsalman, A. R. S., Almashhedy, L. A., & Hadwan, M. H. (2018). Effect of Oral Zinc Supplementation on the Thiol Oxido-Reductive Index and Thiol-Related Enzymes in Seminal Plasma and Spermatozoa of Iraqi Asthenospermic Patients. Biological Trace Element Research, 184(2), 340–349. https://doi.org/10.1007/s12011-017-1215-8
Altoé, L. S., Reis, I. B., Gomes, M., Dolder, H., & Pirovani, J. M. (2017). Could vitamin C and zinc chloride protect the germ cells against sodium arsenite? Human & Experimental Toxicology, 36(10), 1049–1058. https://doi.org/10.1177/0960327116679714
Amidi, F., Pazhohan, A., Shabani Nashtaei, M., Khodarahmian, M., & Nekoonam, S. (2016). The role of antioxidants in sperm freezing: A review. Cell and Tissue Banking, 17(4), 745–756. https://doi.org/10.1007/s10561-016-9566-5
Antoniassi, M. P., Intasqui, P., Camargo, M., Zylbersztejn, D. S., Carvalho, V. M., Cardozo, K. H. M., & Bertolla, R. P. (2016). Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers. BJU International, 118(5), 814–822. https://doi.org/10.1111/bju.13539
Archana, D., Supriya, C., Girish, B. P., Kishori, B., & Reddy, P. S. (2018). Alleviative effect of resveratrol on polyvinyl chloride-induced reproductive toxicity in male Wistar rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 116(Pt B), 173–181. https://doi.org/10.1016/j.fct.2018.04.026
Arena, A. C., Jorge, B. C., Silva, M. C., de Barros, A. L., Fernandes, A. a. H., Nóbrega, R. H., Martinez, E. R. M., Cardoso, C. a. L., Anselmo-Franci, J. A., & Muzzi, R. M. (2018). Acrocomia aculeata oil: Beneficial effects on cyclophosphamide-induced reproductive toxicity in male rats. Andrologia, 50(6), e13028. https://doi.org/10.1111/and.13028
Artini, P. G., Casarosa, E., Carletti, E., Monteleone, P., Di Noia, A., & Di Berardino, O. M. (2017). In vitro effect of myo-inositol on sperm motility in normal and oligoasthenospermia patients undergoing in vitro fertilization. Gynecological Endocrinology: The Official Journal of the International Society of Gynecological Endocrinology, 33(2), 109–112. https://doi.org/10.1080/09513590.2016.1254179
Arun, S., Burawat, J., Yannasithinon, S., Sukhorum, W., Limpongsa, A., & Iamsaard, S. (2018). Phyllanthus emblica leaf extract ameliorates testicular damage in rats with chronic stress. Journal of Zhejiang University. Science. B, 19(12), 948–959. https://doi.org/10.1631/jzus.B1800362
Asadi, N., Kheradmand, A., Gholami, M., Saidi, S. H., & Mirhadi, S. A. (2019). Effect of royal jelly on testicular antioxidant enzymes activity, MDA level and spermatogenesis in rat experimental Varicocele model. Tissue & Cell, 57, 70–77. https://doi.org/10.1016/j.tice.2019.02.005
Atig, F., Kerkeni, A., Saad, A., & Ajina, M. (2017). Effects of reduced seminal enzymatic antioxidants on sperm DNA fragmentation and semen quality of Tunisian infertile men. Journal of Assisted Reproduction and Genetics, 34(3), 373–381. https://doi.org/10.1007/s10815-013-9936-x
Ayla, Ş., Tunalı, G., Bilgiç, B. E., Sofuoğlu, K., Özdemir, A. A., Tanrıverdi, G., Özdemir, S., Soner, B. C., Öztürk, B., Karahüseyinoğlu, S., Aslan, E. G., & Seçkin, I. (2018). Antioxidant activity of CAPE (caffeic acid phenethyl ester) in vitro can protect human sperm deoxyribonucleic acid from oxidative damage. Acta Histochemica, 120(2), 117–121. https://doi.org/10.1016/j.acthis.2018.01.001
Banihani, S. A., & Abu-Alhayjaa, R. F. (2016). The activity of seminal creatine kinase is increased in the presence of pentoxifylline. Andrologia, 48(5), 603–604. https://doi.org/10.1111/and.12486
Banihani, S. A., Abu-Alhayjaa, R. F., Amarin, Z. O., & Alzoubi, K. H. (2018). Pentoxifylline increases the level of nitric oxide produced by human spermatozoa. Andrologia, 50(2). https://doi.org/10.1111/and.12859
Bassey, I. E., Gali, R. M., & Udoh, A. E. (2018). Fertility hormones and vitamin E in active and passive adult male smokers in Calabar, Nigeria. PloS One, 13(11), e0206504. https://doi.org/10.1371/journal.pone.0206504
Biagi, M., Collodel, G., Corsini, M., Pascarelli, N. A., & Moretti, E. (2018). Protective effect of Propolfenol® on induced oxidative stress in human spermatozoa. Andrologia, 50(1). https://doi.org/10.1111/and.12807
Bisht, S., Faiq, M., Tolahunase, M., & Dada, R. (2017). Oxidative stress and male infertility. Nature Reviews. Urology, 14(8), 470–485. https://doi.org/10.1038/nrurol.2017.69
Borovskaya, T. G., Kamalova, S. I., Krivova, N. A., Zaeva, O. B., Poluektova, M. E., Vychuzhanina, A. V., Grigor’eva, V. A., Plotnikov, M. B., & Goldberg, V. E. (2018). Experimental Study of the Effectiveness of Phenolic Antioxidants in Male Infertility Caused by Pathospermia. Bulletin of Experimental Biology and Medicine, 166(1), 7–10. https://doi.org/10.1007/s10517-018-4276-6
Bousnane, N. E. H., May, S., Yahia, M., & Abu Alhaija, A. A. (2017). Association of CAT-262C/T with the concentration of catalase in seminal plasma and the risk for male infertility in Algeria. Systems Biology in Reproductive Medicine, 63(5), 303–310. https://doi.org/10.1080/19396368.2017.1318187
Bouzari, A., Holstege, D., & Barrett, D. M. (2015). Vitamin retention in eight fruits and vegetables: A comparison of refrigerated and frozen storage. Journal of Agricultural and Food Chemistry, 63(3), 957–962. https://doi.org/10.1021/jf5058793
Busetto, G. M., Agarwal, A., Virmani, A., Antonini, G., Ragonesi, G., Del Giudice, F., Micic, S., Gentile, V., & De Berardinis, E. (2018). Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double-blind placebo-controlled study. Andrologia, 50(3). https://doi.org/10.1111/and.12927
Cabral, R. E. L., Mendes, T. B., Vendramini, V., & Miraglia, S. M. (2018). Carnitine partially improves oxidative stress, acrosome integrity, and reproductive competence in doxorubicin-treated rats. Andrology, 6(1), 236–246. https://doi.org/10.1111/andr.12426
Cao, Z., Shao, B., Xu, F., Liu, Y., Li, Y., & Zhu, Y. (2017). Protective Effect of Selenium on Aflatoxin B1-Induced Testicular Toxicity in Mice. Biological Trace Element Research, 180(2), 233–238. https://doi.org/10.1007/s12011-017-0997-z
Carr, A. C., & Maggini, S. (2017). Vitamin C and Immune Function. Nutrients, 9(11). https://doi.org/10.3390/nu9111211
Chae, M. R., Kang, S. J., Lee, K. P., Choi, B. R., Kim, H. K., Park, J. K., Kim, C. Y., & Lee, S. W. (2017). Onion (Allium cepa L.) peel extract (OPE) regulates human sperm motility via protein kinase C-mediated activation of the human voltage-gated proton channel. Andrology, 5(5), 979–989. https://doi.org/10.1111/andr.12406
Chenniappan, K., & Murugan, K. (2017). Therapeutic and fertility restoration effects of Ionidium suffruticosum on sub-fertile male albino Wistar rats: Effects on testis and caudal spermatozoa. Pharmaceutical Biology, 55(1), 946–957. https://doi.org/10.1080/13880209.2016.1278453
Chyra-Jach, D., Kaletka, Z., Dobrakowski, M., Machoń-Grecka, A., Kasperczyk, S., Birkner, E., & Kasperczyk, A. (2018). The Associations between Infertility and Antioxidants, Proinflammatory Cytokines, and Chemokines. Oxidative Medicine and Cellular Longevity, 2018, 8354747. https://doi.org/10.1155/2018/8354747
Cui, X., Jing, X., Wu, X., & Yan, M. (2016). Protective effect of resveratrol on spermatozoa function in male infertility induced by excess weight and obesity. Molecular Medicine Reports, 14(5), 4659–4665. https://doi.org/10.3892/mmr.2016.5840
Cyrus, A., Kabir, A., Goodarzi, D., & Moghimi, M. (2015). The effect of adjuvant vitamin C after varicocele surgery on sperm quality and quantity in infertile men: A double blind placebo controlled clinical trial. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 41(2), 230–238. https://doi.org/10.1590/S1677-5538.IBJU.2015.02.07
Dallak, M. (2018). Crataegus aronia enhances sperm parameters and preserves testicular architecture in both control and non-alcoholic fatty liver disease-induced rats. Pharmaceutical Biology, 56(1), 535–547. https://doi.org/10.1080/13880209.2018.1523934
Dias, T. R., Alves, M. G., Bernardino, R. L., Martins, A. D., Moreira, A. C., Silva, J., Barros, A., Sousa, M., Silva, B. M., & Oliveira, P. F. (2015). Dose-dependent effects of caffeine in human Sertoli cells metabolism and oxidative profile: Relevance for male fertility. Toxicology, 328, 12–20. https://doi.org/10.1016/j.tox.2014.12.003
Dias, T. R., Alves, M. G., Silva, J., Barros, A., Sousa, M., Casal, S., Silva, B. M., & Oliveira, P. F. (2017). Implications of epigallocatechin-3-gallate in cultured human Sertoli cells glycolytic and oxidative profile. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 41, 214–222. https://doi.org/10.1016/j.tiv.2017.03.006
Ding, S.-S., Sun, P., Zhang, Z., Liu, X., Tian, H., Huo, Y.-W., Wang, L.-R., Han, Y., & Xing, J.-P. (2018). Moderate Dose of Trolox Preventing the Deleterious Effects of Wi-Fi Radiation on Spermatozoa In vitro through Reduction of Oxidative Stress Damage. Chinese Medical Journal, 131(4), 402–412. https://doi.org/10.4103/0366-6999.225045
Dobrakowski, M., Kasperczyk, S., Horak, S., Chyra-Jach, D., Birkner, E., & Kasperczyk, A. (2017). Oxidative stress and motility impairment in the semen of fertile males. Andrologia, 49(10). https://doi.org/10.1111/and.12783
Donnelly, E. T., McClure, N., & Lewis, S. E. (1999). Antioxidant supplementation in vitro does not improve human sperm motility. Fertility and Sterility, 72(3), 484–495.
Dorostghoal, M., Kazeminejad, S. R., Shahbazian, N., Pourmehdi, M., & Jabbari, A. (2017). Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia, 49(10). https://doi.org/10.1111/and.12762
Ebokaiwe, A. P., Ijomone, O. M., Osawe, S. O., Chukwu, C. J., Ejike, C. E. C. C., Zhang, G., & Wang, F. (2018). Alteration in sperm characteristics, endocrine balance and redox status in rats rendered diabetic by streptozotocin treatment: Attenuating role of Loranthus micranthus. Redox Report: Communications in Free Radical Research, 23(1), 194–205. https://doi.org/10.1080/13510002.2018.1540675
ElSheikh, M. G., Hosny, M. B., Elshenoufy, A., Elghamrawi, H., Fayad, A., & Abdelrahman, S. (2015). Combination of vitamin E and clomiphene citrate in treating patients with idiopathic oligoasthenozoospermia: A prospective, randomized trial. Andrology, 3(5), 864–867. https://doi.org/10.1111/andr.12086
Ener, K., Aldemir, M., Işık, E., Okulu, E., Özcan, M. F., Uğurlu, M., Tangal, S., & Özayar, A. (2016). The impact of vitamin E supplementation on semen parameters and pregnancy rates after varicocelectomy: A randomised controlled study. Andrologia, 48(7), 829–834. https://doi.org/10.1111/and.12521
Eslamian, G., Amirjannati, N., Rashidkhani, B., Sadeghi, M.-R., & Hekmatdoost, A. (2017). Nutrient patterns and asthenozoospermia: A case-control study. Andrologia, 49(3). https://doi.org/10.1111/and.12624
Evdokimov, V. V., Barinova, K. V., Turovetskii, V. B., Muronetz, V. I., & Schmalhausen, E. V. (2015). Low Concentrations of Hydrogen Peroxide Activate the Antioxidant Defense System in Human Sperm Cells. Biochemistry. Biokhimiia, 80(9), 1178–1185. https://doi.org/10.1134/S0006297915090084
Fatehi, D., Mohammadi, M., Shekarchi, B., Shabani, A., Seify, M., & Rostamzadeh, A. (2018). Radioprotective effects of Silymarin on the sperm parameters of NMRI mice irradiated with γ-rays. Journal of Photochemistry and Photobiology. B, Biology, 178, 489–495. https://doi.org/10.1016/j.jphotobiol.2017.12.004
Feyli, S. A., Ghanbari, A., & Keshtmand, Z. (2017). Therapeutic effect of pentoxifylline on reproductive parameters in diabetic male mice. Andrologia, 49(1). https://doi.org/10.1111/and.12604
Ghafarizadeh, A. A., Vaezi, G., Shariatzadeh, M. A., & Malekirad, A. A. (2018). Effect of in vitro selenium supplementation on sperm quality in asthenoteratozoospermic men. Andrologia, 50(2). https://doi.org/10.1111/and.12869
Ghanbari, E., Khazaei, M. R., Ahangar, P., & Khazaei, M. (2019). Crab Shell Extract Improves Sperm Parameters and Antioxidant Status in Testes of Diabetic Rats. Journal of Dietary Supplements, 16(2), 215–226. https://doi.org/10.1080/19390211.2018.1448923
Gharagozloo, P., Gutiérrez-Adán, A., Champroux, A., Noblanc, A., Kocer, A., Calle, A., Pérez-Cerezales, S., Pericuesta, E., Polhemus, A., Moazamian, A., Drevet, J. R., & Aitken, R. J. (2016). A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: Promising preclinical evidence from animal models. Human Reproduction (Oxford, England), 31(2), 252–262. https://doi.org/10.1093/humrep/dev302
Giacone, F., Condorelli, R. A., Mongioì, L. M., Bullara, V., La Vignera, S., & Calogero, A. E. (2017). In vitro effects of zinc, D-aspartic acid, and coenzyme-Q10 on sperm function. Endocrine, 56(2), 408–415. https://doi.org/10.1007/s12020-016-1013-7
Grami, D., Rtibi, K., Selmi, S., Jridi, M., Sebai, H., Marzouki, L., Sabovic, I., Foresta, C., & De Toni, L. (2018). Aqueous extract of Eruca Sativa protects human spermatozoa from mitochondrial failure due to bisphenol A exposure. Reproductive Toxicology (Elmsford, N.Y.), 82, 103–110. https://doi.org/10.1016/j.reprotox.2018.10.008
Gual-Frau, J., Abad, C., Amengual, M. J., Hannaoui, N., Checa, M. A., Ribas-Maynou, J., Lozano, I., Nikolaou, A., Benet, J., García-Peiró, A., & Prats, J. (2015). Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Human Fertility (Cambridge, England), 18(3), 225–229. https://doi.org/10.3109/14647273.2015.1050462
Gujjala, S., Putakala, M., Gangarapu, V., Nukala, S., Bellamkonda, R., Ramaswamy, R., & Desireddy, S. (2016). Protective effect of Caralluma fimbriata against high-fat diet induced testicular oxidative stress in rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 83, 167–176. https://doi.org/10.1016/j.biopha.2016.06.031
Gulum, M., Gumus, K., Yeni, E., Dogantekin, E., Ciftci, H., Akin, Y., Savas, M., & Altunkol, A. (2017). Blood and semen paraoxonase-arylesterase activities in normozoospermic and azoospermic men. Andrologia, 49(9). https://doi.org/10.1111/and.12752
Guo, L., Jing, J., Feng, Y.-M., & Yao, B. (2015). Tamoxifen is a potent antioxidant modulator for sperm quality in patients with idiopathic oligoasthenospermia. International Urology and Nephrology, 47(9), 1463–1469. https://doi.org/10.1007/s11255-015-1065-2
Gvozdjáková, A., Kucharská, J., Dubravicky, J., Mojto, V., & Singh, R. B. (2015). Coenzyme Q₁₀, α-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. Disease Markers, 2015, 827941. https://doi.org/10.1155/2015/827941
Haghighian, H. K., Haidari, F., Mohammadi-Asl, J., & Dadfar, M. (2015). Randomized, triple-blind, placebo-controlled clinical trial examining the effects of alpha-lipoic acid supplement on the spermatogram and seminal oxidative stress in infertile men. Fertility and Sterility, 104(2), 318–324. https://doi.org/10.1016/j.fertnstert.2015.05.014
Han, X.-X., Jiang, Y.-P., Liu, N., Wu, J., Yang, J.-M., Li, Y.-X., Sun, M., Sun, T., Zheng, P., & Jian-Qiang Yu, null. (2019). Protective effects of Astragalin on spermatogenesis in streptozotocin-induced diabetes in male mice by improving antioxidant activity and inhibiting inflammation. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 110, 561–570. https://doi.org/10.1016/j.biopha.2018.12.012
Ilić, B. S., Kolarević, A., Kocić, G., & Šmelcerović, A. (2018). Ascorbic acid as DNase I inhibitor in prevention of male infertility. Biochemical and Biophysical Research Communications, 498(4), 1073–1077. https://doi.org/10.1016/j.bbrc.2018.03.120
Jannatifar, R., Parivar, K., Roodbari, N. H., & Nasr-Esfahani, M. H. (2019). Effects of N-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. Reproductive Biology and Endocrinology: RB&E, 17(1), 24. https://doi.org/10.1186/s12958-019-0468-9
Kalantari, A., Saremi, A., Shavandi, N., & Foroutan Nia, A. (2017). Impact of Four Week Swimming Exercise with Alpha-Tocopherol Supplementation on Fertility Potential in Healthy Rats. Urology Journal, 14(5), 5023–5026.
Kamkar, N., Ramezanali, F., & Sabbaghian, M. (2018). The relationship between sperm DNA fragmentation, free radicals and antioxidant capacity with idiopathic repeated pregnancy loss. Reproductive Biology, 18(4), 330–335. https://doi.org/10.1016/j.repbio.2018.11.002
Kasperczyk, A., Dobrakowski, M., Czuba, Z. P., Kapka-Skrzypczak, L., & Kasperczyk, S. (2016a). Environmental exposure to zinc and copper influences sperm quality in fertile males. Annals of Agricultural and Environmental Medicine: AAEM, 23(1), 138–143. https://doi.org/10.5604/12321966.1196869
Kasperczyk, A., Dobrakowski, M., Czuba, Z. P., Kapka-Skrzypczak, L., & Kasperczyk, S. (2016b). Influence of iron on sperm motility and selected oxidative stress parameters in fertile males—A pilot study. Annals of Agricultural and Environmental Medicine: AAEM, 23(2), 292–296. https://doi.org/10.5604/12321966.1203893
Katen, A. L., Stanger, S. J., Anderson, A. L., Nixon, B., & Roman, S. D. (2016). Chronic acrylamide exposure in male mice induces DNA damage to spermatozoa; Potential for amelioration by resveratrol. Reproductive Toxicology (Elmsford, N.Y.), 63, 1–12. https://doi.org/10.1016/j.reprotox.2016.05.004
Kedechi, S., Zribi, N., Louati, N., Menif, H., Sellami, A., Lassoued, S., Ben Mansour, R., Keskes, L., Rebai, T., & Chakroun, N. (2017). Antioxidant effect of hydroxytyrosol on human sperm quality during in vitro incubation. Andrologia, 49(1). https://doi.org/10.1111/and.12595
Khalaf, A. A., Ahmed, W., Moselhy, W. A., Abdel-Halim, B. R., & Ibrahim, M. A. (2019). Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Human & Experimental Toxicology, 38(4), 398–408. https://doi.org/10.1177/0960327118816134
Kim, M. K., Cha, K.-M., Hwang, S.-Y., Park, U.-K., Seo, S. K., Lee, S.-H., Jeong, M.-S., Cho, S., Kopalli, S. R., & Kim, S.-K. (2017). Pectinase-treated Panax ginseng protects heat stress-induced testicular damage in rats. Reproduction (Cambridge, England), 153(6), 737–747. https://doi.org/10.1530/REP-16-0560
Kobori, Y., Suzuki, K., Iwahata, T., Shin, T., Sadaoka, Y., Sato, R., Nishio, K., Yagi, H., Arai, G., Soh, S., Okada, H., Strong, J. M., & Rohdewald, P. (2015). Improvement of seminal quality and sexual function of men with oligoasthenoteratozoospermia syndrome following supplementation with L-arginine and Pycnogenol®. Archivio Italiano Di Urologia, Andrologia: Organo Ufficiale [Di] Societa Italiana Di Ecografia Urologica E Nefrologica, 87(3), 190–193. https://doi.org/10.4081/aiua.2015.3.190
Kolesnikova, L. I., Kurashova, N. A., Bairova, T. A., Dolgikh, M. I., Ershova, O. A., Natyaganova, L. V., Dashiev, B. G., Gutnik, I. N., & Koroleva, N. V. (2017). Features of Lipoperoxidation, Antioxidant Defense, and Thiol/Disulfide System in the Pathogenesis of Infertility in Males, Carriers of Nonfunctional Variants of GSTT1 and GSTM1 Gene Polymorphisms. Bulletin of Experimental Biology and Medicine, 163(3), 378–380. https://doi.org/10.1007/s10517-017-3808-9
Kolesnikova, L. I., Kurashova, N. A., Osadchuk, L. V., Osadchuk, A. V., Dolgikh, M. I., & Dashiev, B. G. (2015). Parameters of Pro- and Antioxidant Status in Ejaculate of Men of Fertile Age. Bulletin of Experimental Biology and Medicine, 159(6), 726–728. https://doi.org/10.1007/s10517-015-3059-6
Kratz, E. M., Piwowar, A., Zeman, M., Stebelová, K., & Thalhammer, T. (2016). Decreased melatonin levels and increased levels of advanced oxidation protein products in the seminal plasma are related to male infertility. Reproduction, Fertility, and Development, 28(4), 507–515. https://doi.org/10.1071/RD14165
Kumar Roy, V., Marak, T. R., & Gurusubramanian, G. (2016). Alleviating effect of Mallotus roxburghianus in heat-induced testicular dysfunction in Wistar rats. Pharmaceutical Biology, 54(5), 905–918. https://doi.org/10.3109/13880209.2015.1091480
Lee, D., Moawad, A. R., Morielli, T., Fernandez, M. C., & O’Flaherty, C. (2017). Peroxiredoxins prevent oxidative stress during human sperm capacitation. Molecular Human Reproduction, 23(2), 106–115. https://doi.org/10.1093/molehr/gaw081
Lipovac, M., Bodner, F., Imhof, M., & Chedraui, P. (2016). Comparison of the effect of a combination of eight micronutrients versus a standard mono preparation on sperm parameters. Reproductive Biology and Endocrinology: RB&E, 14(1), 84. https://doi.org/10.1186/s12958-016-0219-0
Liu, B., Wu, S.-D., Shen, L.-J., Zhao, T.-X., Wei, Y., Tang, X.-L., Long, C.-L., Zhou, Y., He, D.-W., Lin, T., & Wei, G.-H. (2019). Spermatogenesis dysfunction induced by PM2.5 from automobile exhaust via the ROS-mediated MAPK signaling pathway. Ecotoxicology and Environmental Safety, 167, 161–168. https://doi.org/10.1016/j.ecoenv.2018.09.118
Liu, J., Zhu, P., Wang, W. T., Li, N., Liu, X., Shen, X. F., Wang, Y. W., & Li, Y. (2016). TAT-peroxiredoxin 2 Fusion Protein Supplementation Improves Sperm Motility and DNA Integrity in Sperm Samples from Asthenozoospermic Men. The Journal of Urology, 195(3), 706–712. https://doi.org/10.1016/j.juro.2015.11.019
Lv, M.-G., Chen, W.-Q., Weng, S.-Q., Chen, H.-Y., Cheng, Y.-M., & Luo, T. (2018). Rosmarinic acid compromises human sperm functions by an intracellular Ca2+ concentration-related mechanism. Reproductive Toxicology (Elmsford, N.Y.), 81, 58–63. https://doi.org/10.1016/j.reprotox.2018.07.079
Macanovic, B., Vucetic, M., Jankovic, A., Stancic, A., Buzadzic, B., Garalejic, E., Korac, A., Korac, B., & Otasevic, V. (2015). Correlation between sperm parameters and protein expression of antioxidative defense enzymes in seminal plasma: A pilot study. Disease Markers, 2015, 436236. https://doi.org/10.1155/2015/436236
Magdi, Y., Darwish, E., Elbashir, S., Majzoub, A., & Agarwal, A. (2017). Effect of modifiable lifestyle factors and antioxidant treatment on semen parameters of men with severe oligoasthenoteratozoospermia. Andrologia, 49(7). https://doi.org/10.1111/and.12694
Malm, G., Haugen, T. B., Rylander, L., & Giwercman, A. (2017). Seasonal fluctuation in the secretion of the antioxidant melatonin is not associated with alterations in sperm DNA damage. Asian Journal of Andrology, 19(1), 52–56. https://doi.org/10.4103/1008-682X.186870
Martínez-Soto, J. C., Domingo, J. C., Cordobilla, B., Nicolás, M., Fernández, L., Albero, P., Gadea, J., & Landeras, J. (2016). Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Systems Biology in Reproductive Medicine, 62(6), 387–395. https://doi.org/10.1080/19396368.2016.1246623
Mayorga-Torres, B. J. M., Camargo, M., Cadavid, Á. P., du Plessis, S. S., & Cardona Maya, W. D. (2017). Are oxidative stress markers associated with unexplained male infertility? Andrologia, 49(5). https://doi.org/10.1111/and.12659
Micheli, L., Cerretani, D., Collodel, G., Menchiari, A., Moltoni, L., Fiaschi, A. I., & Moretti, E. (2016). Evaluation of enzymatic and non-enzymatic antioxidants in seminal plasma of men with genitourinary infections, varicocele and idiopathic infertility. Andrology, 4(3), 456–464. https://doi.org/10.1111/andr.12181
Mikkelsen, K., & Apostolopoulos, V. (2018). B Vitamins and Ageing. Sub-Cellular Biochemistry, 90, 451–470. https://doi.org/10.1007/978-981-13-2835-0_15
Missassi, G., Dos Santos Borges, C., de Lima Rosa, J., Villela E Silva, P., da Cunha Martins, A., Barbosa, F., & De Grava Kempinas, W. (2017). Chrysin Administration Protects against Oxidative Damage in Varicocele-Induced Adult Rats. Oxidative Medicine and Cellular Longevity, 2017, 2172981. https://doi.org/10.1155/2017/2172981
Moayeri, A., Mokhtari, T., Hedayatpour, A., Abbaszadeh, H.-A., Mohammadpour, S., Ramezanikhah, H., & Shokri, S. (2018). Impact of melatonin supplementation in the rat spermatogenesis subjected to forced swimming exercise. Andrologia, 50(3). https://doi.org/10.1111/and.12907
Moretti, E., Collodel, G., Fiaschi, A. I., Micheli, L., Iacoponi, F., & Cerretani, D. (2017). Nitric oxide, malondialdheyde and non-enzymatic antioxidants assessed in viable spermatozoa from selected infertile men. Reproductive Biology, 17(4), 370–375. https://doi.org/10.1016/j.repbio.2017.10.003
Moretti, E., Mazzi, L., Bonechi, C., Salvatici, M. C., Iacoponi, F., Rossi, C., & Collodel, G. (2016). Effect of Quercetin-loaded liposomes on induced oxidative stress in human spermatozoa. Reproductive Toxicology (Elmsford, N.Y.), 60, 140–147. https://doi.org/10.1016/j.reprotox.2016.02.012
Navas, P., Paffoni, A., Intra, G., González-Utor, A., Clavero, A., Gonzalvo, M. C., Díaz, R., Peña, R., Restelli, L., Somigliana, E., Papaleo, E., Castilla, J. A., & Viganò, P. (2017). Obstetric and neo-natal outcomes of ICSI cycles using pentoxifylline to identify viable spermatozoa in patients with immotile spermatozoa. Reproductive Biomedicine Online, 34(4), 414–421. https://doi.org/10.1016/j.rbmo.2017.01.009
Nenkova, G., Petrov, L., & Alexandrova, A. (2017). Role of Trace Elements for Oxidative Status and Quality of Human Sperm. Balkan Medical Journal, 34(4), 343–348. https://doi.org/10.4274/balkanmedj.2016.0147
Ngoula, F., Guemdjo Tekam, M., Kenfack, A., Tadondjou Tchingo, C. D., Nouboudem, S., Ngoumtsop, H., Tsafack, B., Teguia, A., Kamtchouing, P., Galeotti, M., & Tchoumboue, J. (2017). Effects of heat stress on some reproductive parameters of male cavie (Cavia porcellus) and mitigation strategies using guava (Psidium guajava) leaves essential oil. Journal of Thermal Biology, 64, 67–72. https://doi.org/10.1016/j.jtherbio.2017.01.001
Ogórek, M., Gąsior, Ł., Pierzchała, O., Daszkiewicz, R., & Lenartowicz, M. (2017). Role of copper in the process of spermatogenesis. Postepy Higieny I Medycyny Doswiadczalnej (Online), 71(0), 663–683.
Oliveira, P. F., Tomás, G. D., Dias, T. R., Martins, A. D., Rato, L., Alves, M. G., & Silva, B. M. (2015). White tea consumption restores sperm quality in prediabetic rats preventing testicular oxidative damage. Reproductive Biomedicine Online, 31(4), 544–556. https://doi.org/10.1016/j.rbmo.2015.06.021
Onaolapo, A. Y., Oladipo, B. P., & Onaolapo, O. J. (2018). Cyclophosphamide-induced male subfertility in mice: An assessment of the potential benefits of Maca supplement. Andrologia, 50(3). https://doi.org/10.1111/and.12911
Ourique, G. M., Pês, T. S., Saccol, E. M. H., Finamor, I. A., Glanzner, W. G., Baldisserotto, B., Pavanato, M. A., Gonçalves, P. B. D., & Barreto, K. P. (2016). Resveratrol prevents oxidative damage and loss of sperm motility induced by long-term treatment with valproic acid in Wistar rats. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 68(8), 435–443. https://doi.org/10.1016/j.etp.2016.07.001
Padayatty, S. J., & Levine, M. (2016). Vitamin C: The known and the unknown and Goldilocks. Oral Diseases, 22(6), 463–493. https://doi.org/10.1111/odi.12446
Pajovic, B., Dimitrovski, A., Radojevic, N., & Vukovic, M. (2016). A correlation between selenium and carnitine levels with hypo-osmotic swelling test for sperm membrane in low-grade varicocele patients. European Review for Medical and Pharmacological Sciences, 20(4), 598–604.
Panner Selvam, M. K., Henkel, R., Sharma, R., & Agarwal, A. (2018). Calibration of redox potential in sperm wash media and evaluation of oxidation-reduction potential values in various assisted reproductive technology culture media using MiOXSYS system. Andrology, 6(2), 293–300. https://doi.org/10.1111/andr.12461
Pavin, N. F., Izaguirry, A. P., Soares, M. B., Spiazzi, C. C., Mendez, A. S. L., Leivas, F. G., Dos Santos Brum, D., & Cibin, F. W. S. (2018). Tribulus terrestris Protects against Male Reproductive Damage Induced by Cyclophosphamide in Mice. Oxidative Medicine and Cellular Longevity, 2018, 5758191. https://doi.org/10.1155/2018/5758191
Phillips, K. M., Tarrago-Trani, M. T., McGinty, R. C., Rasor, A. S., Haytowitz, D. B., & Pehrsson, P. R. (2018). Seasonal variability of the vitamin C content of fresh fruits and vegetables in a local retail market. Journal of the Science of Food and Agriculture, 98(11), 4191–4204. https://doi.org/10.1002/jsfa.8941
Prathima, P., Pavani, R., Sukeerthi, S., & Sainath, S. B. (2018). α-Lipoic acid inhibits testicular and epididymal oxidative damage and improves fertility efficacy in arsenic-intoxicated rats. Journal of Biochemical and Molecular Toxicology, 32(2). https://doi.org/10.1002/jbt.22016
Pullar, J. M., Carr, A. C., Bozonet, S. M., Rosengrave, P., Kettle, A. J., & Vissers, M. C. M. (2017). Elevated seminal plasma myeloperoxidase is associated with a decreased sperm concentration in young men. Andrology, 5(3), 431–438. https://doi.org/10.1111/andr.12327
Quadri, A. L., & Yakubu, M. T. (2017). Fertility enhancing activity and toxicity profile of aqueous extract of Chasmanthera dependens roots in male rats. Andrologia, 49(10). https://doi.org/10.1111/and.12775
Quan, C., Wang, C., Duan, P., Huang, W., Chen, W., Tang, S., & Yang, K. (2017). Bisphenol a induces autophagy and apoptosis concurrently involving the Akt/mTOR pathway in testes of pubertal SD rats: BPA INDUCES AUTOPHAGY AND APOPTOSIS IN TESTES. Environmental Toxicology, 32(8), 1977–1989. https://doi.org/10.1002/tox.22339
Raad, G., Mansour, J., Ibrahim, R., Azoury, J., Azoury, J., Mourad, Y., Fakih, C., & Azoury, J. (2019). What are the effects of vitamin C on sperm functional properties during direct swim-up procedure? Zygote (Cambridge, England), 27(2), 69–77. https://doi.org/10.1017/S0967199419000030
Rafiee, B., Morowvat, M. H., & Rahimi-Ghalati, N. (2016). Comparing the Effectiveness of Dietary Vitamin C and Exercise Interventions on Fertility Parameters in Normal Obese Men. Urology Journal, 13(2), 2635–2639.
Rago, R., Gallo, M., Dal Lago, A., Licata, E., Paciotti, G., Amodei, M., Meneghini, C., Fabiani, C., Dani, G., Liberanome, C., Antonaci, D., Corno, R., Miriello, D., Giuffrida, G., & Giammusso, B. (2017). Controlled, prospective, observational study on the efficiency and tolerability of a combination of potential Nrf2-inducing antioxidants and micronutrients as pre-treatment for ICSI in dyspermic patients with previous failure. European Review for Medical and Pharmacological Sciences, 21(7), 1645–1652.
Ranganathan, P., Rao, K. A., Sudan, J. J., & Balasundaram, S. (2018). Cadmium effects on sperm morphology and semenogelin with relates to increased ROS in infertile smokers: An in vitro and in silico approach. Reproductive Biology, 18(2), 189–197. https://doi.org/10.1016/j.repbio.2018.04.003
Ranjan, A., Choubey, M., Yada, T., & Krishna, A. (2019). Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice. General and Comparative Endocrinology, 271, 49–60. https://doi.org/10.1016/j.ygcen.2018.10.022
Rao, F., Zhai, Y., & Sun, F. (2016). Punicalagin Mollifies Lead Acetate-Induced Oxidative Imbalance in Male Reproductive System. International Journal of Molecular Sciences, 17(8). https://doi.org/10.3390/ijms17081269
Riaz, M., Mahmood, Z., Shahid, M., Saeed, M. U. Q., Tahir, I. M., Shah, S. A., Munir, N., & El-Ghorab, A. (2016). Impact of reactive oxygen species on antioxidant capacity of male reproductive system. International Journal of Immunopathology and Pharmacology, 29(3), 421–425. https://doi.org/10.1177/0394632015608994
Roychoudhury, S., Sharma, R., Sikka, S., & Agarwal, A. (2016). Diagnostic application of total antioxidant capacity in seminal plasma to assess oxidative stress in male factor infertility. Journal of Assisted Reproduction and Genetics, 33(5), 627–635. https://doi.org/10.1007/s10815-016-0677-5
Safari, H., Khanlarkhani, N., Sobhani, A., Najafi, A., & Amidi, F. (2018). Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men. Human Fertility (Cambridge, England), 21(4), 248–254. https://doi.org/10.1080/14647273.2017.1346301
Salahipour, M. H., Hasanzadeh, S., & Malekinejad, H. (2017). Ameliorative effects of Achillea millefolium inflorescences alcoholic extract against nicotine-induced reproductive failure in rat. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 69(7), 504–516. https://doi.org/10.1016/j.etp.2017.04.012
Salian, S. R., Nayak, G., Kumari, S., Patel, S., Gowda, S., Shenoy, Y., Sugunan, S., G K, R., Managuli, R. S., Mutalik, S., Dahiya, V., Pal, S., Adiga, S. K., & Kalthur, G. (2019). Supplementation of biotin to sperm preparation medium enhances fertilizing ability of spermatozoa and improves preimplantation embryo development. Journal of Assisted Reproduction and Genetics, 36(2), 255–266. https://doi.org/10.1007/s10815-018-1323-1
Salimnejad, R., Soleimani Rad, J., Mohammad Nejad, D., & Roshangar, L. (2018). Effect of ghrelin on total antioxidant capacity, lipid peroxidation, sperm parameters and fertility in mice against oxidative damage caused by cyclophosphamide. Andrologia, 50(2). https://doi.org/10.1111/and.12883
Sanjeev, S., Murthy, M. K., Sunita Devi, M., Khushboo, M., Renthlei, Z., Ibrahim, K. S., Kumar, N. S., Roy, V. K., & Gurusubramanian, G. (2019). Isolation, characterization, and therapeutic activity of bergenin from marlberry (Ardisia colorata Roxb.) leaf on diabetic testicular complications in Wistar albino rats. Environmental Science and Pollution Research International, 26(7), 7082–7101. https://doi.org/10.1007/s11356-019-04139-9
Schaalan, M. F., Ramadan, B. K., & H Abd Elwahab, A. (2018). Ameliorative effect of taurine-chloramine in azathioprine-induced testicular damage; a deeper insight into the mechanism of protection. BMC Complementary and Alternative Medicine, 18(1), 255. https://doi.org/10.1186/s12906-018-2272-z
Shateri, H., Ranjbar, A., Kheiripour, N., Ghasemi, H., Pourfarjam, Y., Habibitabar, E., Gholami, H., & Moridi, H. (2019). Tempol improves oxidant/antioxidant parameters in testicular tissues of diabetic rats. Life Sciences, 221, 65–71. https://doi.org/10.1016/j.lfs.2019.02.016
Shaygannia, E., Tavalaee, M., Akhavanfarid, G. R., Rahimi, M., Dattilo, M., & Nasr-Esfahani, M. H. (2018). Alpha-Lipoic Acid improves the testicular dysfunction in rats induced by varicocele. Andrologia, 50(9), e13085. https://doi.org/10.1111/and.13085
Shi, G.-J., Zheng, J., Wu, J., Qiao, H.-Q., Chang, Q., Niu, Y., Sun, T., Li, Y.-X., & Yu, J.-Q. (2017). Beneficial effects of Lycium barbarum polysaccharide on spermatogenesis by improving antioxidant activity and inhibiting apoptosis in streptozotocin-induced diabetic male mice. Food & Function, 8(3), 1215–1226. https://doi.org/10.1039/c6fo01575a
Shi, H., Liu, J., Zhu, P., Wang, H., Zhao, Z., Sun, G., & Li, J. (2018). Expression of peroxiredoxins in the human testis, epididymis and spermatozoa and their role in preventing H2O2-induced damage to spermatozoa. Folia Histochemica Et Cytobiologica, 56(3), 141–150. https://doi.org/10.5603/FHC.a2018.0019
Sikka, S. C. (2001). Relative impact of oxidative stress on male reproductive function. Current Medicinal Chemistry, 8(7), 851–862.
Silberstein, T., Har-Vardi, I., Harlev, A., Friger, M., Hamou, B., Barac, T., Levitas, E., & Saphier, O. (2016). Antioxidants and Polyphenols: Concentrations and Relation to Male Infertility and Treatment Success. Oxidative Medicine and Cellular Longevity, 2016, 9140925. https://doi.org/10.1155/2016/9140925
Skibińska, I., Jendraszak, M., Borysiak, K., Jędrzejczak, P., & Kotwicka, M. (2016). 17β-estradiol and xenoestrogens reveal synergistic effect on mitochondria of human sperm. Ginekologia Polska, 87(5), 360–366. https://doi.org/10.5603/GP.2016.0005
Smit, M., Dohle, G. R., Hop, W. C. J., Wildhagen, M. F., Weber, R. F. A., & Romijn, J. C. (2007). Clinical correlates of the biological variation of sperm DNA fragmentation in infertile men attending an andrology outpatient clinic. International Journal of Andrology, 30(1), 48–55. https://doi.org/10.1111/j.1365-2605.2006.00710.x
Sposito, C., Camargo, M., Tibaldi, D. S., Barradas, V., Cedenho, A. P., Nichi, M., Bertolla, R. P., & Spaine, D. M. (2017). Antioxidant enzyme profile and lipid peroxidation products in semen samples of testicular germ cell tumor patients submitted to orchiectomy. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 43(4), 644–651. https://doi.org/10.1590/S1677-5538.IBJU.2016.0323
Srivastava, S., & Gupta, P. (2018). Alteration in apoptotic rate of testicular cells and sperms following administration of Bisphenol A (BPA) in Wistar albino rats. Environmental Science and Pollution Research International, 25(22), 21635–21643. https://doi.org/10.1007/s11356-018-2229-2
Tekayev, M., Bostancieri, N., Saadat, K. A. S. M., Turker, M., Yuncu, M., Ulusal, H., Cicek, H., & Arman, K. (2019). Effects of Moringa oleifera Lam Extract (MOLE) in the heat shock protein 70 expression and germ cell apoptosis on experimentally induced cryptorchid testes of rats. Gene, 688, 140–150. https://doi.org/10.1016/j.gene.2018.11.091
Tesarik, J., Greco, E., & Mendoza, C. (2004). Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Human Reproduction (Oxford, England), 19(3), 611–615. https://doi.org/10.1093/humrep/deh127
Türedi, S., Yuluğ, E., Alver, A., Kutlu, Ö., & Kahraman, C. (2015). Effects of resveratrol on doxorubicin induced testicular damage in rats. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 67(3), 229–235. https://doi.org/10.1016/j.etp.2014.12.002
Unsal, E., Turan, V., Aktuna, S., Hurdag, C., Bereketoglu, G., Canillioglu, Y., Baltacı, A., Ozcan, S., Karayalcin, R., Batırbaygil, H., & Baltacı, V. (2016). Effects of pentoxifylline and platelet activating factor on sperm DNA damage. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 197, 125–129. https://doi.org/10.1016/j.ejogrb.2015.12.016
Valcarce, D. G., Genovés, S., Riesco, M. F., Martorell, P., Herráez, M. P., Ramón, D., & Robles, V. (2017). Probiotic administration improves sperm quality in asthenozoospermic human donors. Beneficial Microbes, 8(2), 193–206. https://doi.org/10.3920/BM2016.0122
Vieira, N. de M. G., Losano, J. D. de A., Angrimani, D. de S. R., Kawai, G. K. V., Bicudo, L. de C., Rui, B. R., da Silva, B. do C. S., Assumpção, M. E. O. D., & Nichi, M. (2018). Induced sperm oxidative stress in dogs: Susceptibility against different reactive oxygen species and protective role of seminal plasma. Theriogenology, 108, 39–45. https://doi.org/10.1016/j.theriogenology.2017.11.020
Wagner, B. A., Buettner, G. R., & Burns, C. P. (1994). Free radical-mediated lipid peroxidation in cells: Oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry, 33(15), 4449–4453.
Wdowiak, A., Bakalczuk, S., & Bakalczuk, G. (2015). Decreased activity of superoxide dismutase in the seminal plasma of infertile men correlates with increased sperm deoxyribonucleic acid fragmentation during the first hours after sperm donation. Andrology, 3(4), 748–755. https://doi.org/10.1111/andr.12061
WHO. World Health Statistics 2010. ([s.d.]). WHO. https://doi.org//entity/whosis/whostat/2010/en/index.html
Wisniewski, P., Romano, R. M., Kizys, M. M. L., Oliveira, K. C., Kasamatsu, T., Giannocco, G., Chiamolera, M. I., Dias-da-Silva, M. R., & Romano, M. A. (2015). Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic–pituitary–testicular axis. Toxicology, 329, 1–9. https://doi.org/10.1016/j.tox.2015.01.002
Yamamoto, Y., Aizawa, K., Mieno, M., Karamatsu, M., Hirano, Y., Furui, K., Miyashita, T., Yamazaki, K., Inakuma, T., Sato, I., Suganuma, H., & Iwamoto, T. (2017). The effects of tomato juice on male infertility. Asia Pacific Journal of Clinical Nutrition, 26(1), 65–71. https://doi.org/10.6133/apjcn.102015.17
Zhang, G.-L., Zhang, X.-F., Feng, Y.-M., Li, L., Huynh, E., Sun, X.-F., Sun, Z.-Y., & Shen, W. (2013). Exposure to bisphenol A results in a decline in mouse spermatogenesis. Reproduction, Fertility and Development, 25(6), 847. https://doi.org/10.1071/RD12159
Zhang, L., Diao, R. Y., Duan, Y. G., Yi, T. H., & Cai, Z. M. (2017). In vitro antioxidant effect of curcumin on human sperm quality in leucocytospermia. Andrologia, 49(10). https://doi.org/10.1111/and.12760
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Luana Nayara Gallego Adami; Valter Luiz Maciel Junior; João Diego Losano
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.