O índice de produtos de acumulação lipídica como bom preditor de risco cardiovascular em pacientes com doença renal crônica em hemodiálise

Autores

DOI:

https://doi.org/10.33448/rsd-v11i2.25401

Palavras-chave:

Nefropatias; Diálise; Antropometria; Doenças cardiovasculares.

Resumo

Objetivo: avaliar o poder preditivo do índice Produto de Acumulação Lipídica (Lipid Accumulation Products - LAP) na identificação do risco cardiovascular em pacientes com doença renal em hemodiálise em comparação aos indicadores antropométricos e bioquímicos tradicionais. Metodologia: estudo transversal envolvendo 77 pacientes com Doença Renal Crônica (DRC) em tratamento hemodialíticos. Foram coletados dados de identificação, antropometria e medidas bioquímicas. Indicadores antropométricos, bioquímicos e o que combinam ambos (LAP) foram calculados. Foi realizada curva receiver operating characteristic (ROC) e as áreas sobre a curva foram estimadas a fim de identificar o poder de identificação do Risco Cardiovascular (RCV) e estabelecer pontos de corte dos indicadores. Resultados: A maioria dos indivíduos apresentou risco cardiovascular pela Relação Cintura-Altura (RCA). As medianas de colesterol total e triglicerídeos e a média de LDL-c foram maiores no grupo com RCV avaliado pelo colesterol não-HDL em comparação aos sem RCV (p<0,05). Escore LAP apresentou diferenças significativas entre os grupos de RCV, sendo a mediana do LAP, 77,54 (45,72-142,88), maior no grupo daqueles com RCV em comparação aos sem RCV, 43,06 (30,98-77,06). LAP (AUC: 0,705; IC95%: 0,589-0,821; p=0,003) foi o melhor discriminador do RCV, onde o ponto de corte >92,21 do LAP, a sensibilidade de 44% e a especificidade de 92,59% foram estimados para identificar o RCV. Conclusão: O índice LAP apresentou maior poder na identificação do RCV, quando comparado a medidas antropométricas ou bioquímicas isoladas.

Referências

Almeida, A. F., Sena, M. H. L. G., Santana, G. T., Barbosa, R. L., Gobatto, A. L. N., Conceição, M. E. P., et al (2017). Razão TG/HDL-c, indicadores antropométricos e bioquímicos de risco cardiovascular no renal crônico em tratamento conservador. Nutricion Clinica y Dietetica Hospitalaria, 37(4): 10-16.

Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica – ABESO (2016). Diretrizes brasileiras de obesidade. Associação Brasileira para o estudo da Obesidade e da Síndrome Metabólica, 4 ed, 4: 1-188.

Bagasrawala, S. I., Sheth, H., Shah, H., Ansari, R., Lakdawala, M (2019). Metabolic Syndrome Rather than Obesity Alone Is More Significant for Kidney Disease. Obes Surg, 29(11):3478-3483. doi: 10.1007/s11695-019-04011-2.

Baigent, C. et al (2011). “The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial.” Lancet (London, England), 377,9784: 2181-92. doi:10.1016/S0140-6736(11)60739-3.

Bartekova, M., Radosinska, J., Jelemensky, M., Dhalla, N. S (2018). Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev, 23(5):733-758. doi: 10.1007/s10741-018-9716-x.

Biyik, Z., Guney, I (2019). Lipid accumulation product and visceral adiposity ındex: two new indices to predict metabolic syndrome in chronic kidney disease. Eur Rev Med Pharmacol Sci, 23(5):2167-2173. doi: 10.26355/eurrev_201903_17262.

Brandão, H. F. C., Saraiva, M. B. M., Sousa, B. S., Almeida, S. S., Souza, E. D. S., Melo, H. C. M., et al (2021). Estado nutricional e sua associação com risco cardiovascular no paciente em tratamento hemodialítico. Brazilian Journal Of Development, 7(2): 11712-11728.

Brasil - Ministério da Saúde (2011). Orientações para a coleta e análise de dados antropométricos em serviços de saúde: Norma técnica do Sistema de Vigilância Alimentar e Nutricional - SISVAN. Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica, Ministério da Saúde, 76p.

Câmara, N. O., Iseki, K., Kramer, H., Liu, Z. H., Sharma, K (2017). Kidney disease and obesity: epidemiology, mechanisms and treatment. Nat Rev Nephrol, 13(3):181-190. doi: 10.1038/nrneph.2016.191. Epub 2017.

Chang, T. I., Streja, E., Ko, G. J., Naderi, N., Rhee, C. M., Kovesdy, C. P. et al (2018). Inverse Association Between Serum Non–High-Density Lipoprotein Cholesterol Levels and Mortality in Patients Undergoing Incident Hemodialysis. J Am Heart Assoc, 7:e009096. DOI: 10.1161/JAHA.118.009096.

Chiu, H., Wu, P. Y., Huang, J. C., Tu, H. P., Lin, M. Y., Chen, S. C. C., Chang, J. M (2020). There is a U shaped association betweem non high densitu lipoprotein cholesterel with overall and cardiovascular mortality in chronic kidney disease stage 3-5. Scientifc Reports, 10(1):1-11.

Conselho Nacional de Saúde (BRASIL). Resolução nº 466, de 12 de dezembro de 2012. Brasília, 2012. Disponível em: http://www.conselho.saude.gov.br/resolucoes/reso_12.htm. Acesso em 27 abr 2021.

D'Agati, V. D., Chagnac, A., de Vries, A. P., Levi, M., Porrini, E., Herman-Edelstein, M., Praga, M (2016). Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol, 12(8):453-71. doi: 10.1038/nrneph.2016.75.

Davies, S. J., Davenport, A (2014). The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int, 86(3):489-96. doi: 10.1038/ki.2014.207.

Greffin, S., André, M. B., Matos, J. P. S., Kang, H. C., Jorge, A. J. L., Rosa, M. L. G., et al (2017). Chronic kidney disease and metabolic syndrome as risk factors for cardiovascular disease in a primary care program. J Bras Nefrologia, 39(3): 246-252.

Guo, S. X., Zhang, X. H., Zhang, J. Y., He, J., Yan, Y. Z., Ma, J. L., Ma, R. L., Guo, H., Mu, L. T., Li, S. G., Niu, Q., Rui, D. S., Zhang, M., Liu, J. M., Wang, K., Xu, S. Z., Gao, X., Ding, Y. S (2016). Visceral Adiposity and Anthropometric Indicators as Screening Tools of Metabolic Syndrome among Low Income Rural Adults in Xinjiang. Sci Rep, 26;6:36091.

Kahn, H. S (2005). The lipid accumulation product performs better tha the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord. 5(26), doi:10.1186/1471-2261-5-26.

KDIGO (2014). Kidney Disease: Improving Global Outcomes (KDIGO) Lipid Working Group. KDIGO clinical practice guideline for lipid management in chronic kidney disease. Kidney Int. Suppl, 3, 263–305.

Lin, T. Y., Hung, S. C., Lim, P. S (2019). Central obesity and incident atherosclerotic cardiovascular disease events in hemodialysis patients. Nutr Metab Cardiovasc Dis, 9;30(3):500-507. doi: 10.1016/j.numecd.2019.11.004. Epub 2019 Nov 15.

Liu, Y., Wang, Y., Wang, J., Chen, K., Jin, L., Wang, W., Gao, Z., Tang, X., Yan, L., Wan, Q., Luo, Z., Qin, G., Chen, L., Um, Y (2021). Lipid Accumulation Product is Associated with Urinary Albumin-creatinine Ratio in Chinese Prediabitic Population: A Report from the REACTION Study. Diabetes Metab Syndr Obes, 28;14:2415-2425. doi: 10.2147/DMSO.S310751.

Major, R. W., Cheng, M. R. I., Grant, R. A., Shantikumar, S., Xu, G., Oozeerally, I., Brunskill, N. J., Gray, L. J (2018). Cardiovascular disease risk factors in chronic kidney disease: A systematic review and meta-analysis. PLoS One, 21;13(3):e0192895. doi: 10.1371/journal.pone.0192895.

Millan, J., Pinto, X., Munoz, A., Zuniga, M., Rubies-Prat, J., Pallardo, L. F., et al (2009). Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag, 5:757–65.

Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Especializada e Temática. Diretrizes Clínicas para o Cuidado ao paciente com Doença Renal Crônica – DRC no Sistema Único de Saúde. Brasília (Brasil) 2014; 37.

Mondal, E. et al (2021). “The Pattern of Lipid Profile in Patients with Chronic Kidney Disease”. Mymensingh medical journal MMJ, 30(1): 48-55.

Motamed, N., Razmjou, S., Hemmasi, G., Maadi, M., Zamani, F (2015). Lipid accumulation product and metabolic syndrome: a population-based study in northern Iran, Amol. J Endocrinol Invest, 39(4):375-82. doi: 10.1007/s40618-015-0369-5.

Nishi, H., Higashihara, T., Inagi, R (2019). Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction. Nutrients, 20;11(7):1664. doi: 10.3390/nu11071664. PMID: 31330812.

Pereira-Rodríguez, J. E., Boada-Morales, L., Niño-Serrato, D. R., Caballero-Chavarro, M., Ricón-Gonzalez, G., Jaimes-Martín, T., et al (2017). Síndrome cardiorrenal. Rev Colomb Cardio, 24(6): 602-613.

Précoma, D. B., Oliveira, G. M. M., Simão, A. F., Dutra, O. P., Coelho, O. R., Izar, M. C. O., et al (2019). Updated Cardiovascular Prevention Guideline of the Brazilian Society of Cardiology - 2019. Arq Bras Cardiol, 113(4): 787–891.

Sociedade Brasileira de Cardiologia (2017). Atualização da Diretriz brasileira de dislipidemia e prevenção da aterosclerose. Arquivos Brasileiros de Cardiologia, 109(2):1-92

Sumida, K., Kovesdy, C. P (2019). The gut-kidney-heart axis in chronic kidney disease. Physiol Int, 1;106(3):195-206. doi: 10.1556/2060.106.2019.19. Epub 2019 Sep 27.

Wen, J., Chen, Y., Huang, Y., Lu, Y., Liu, X., Zhou, H., et al (2017). Association of the TG/HDL-C and Non-HDL-C/HDL-C Ratios with Chronic Kidney Disease in an Adult Chinese Population. Kidney And Blood Pressure Research, 42(6):1141-1154.

World Health Organization (1997). Obesity. Preventing and managing the global epidemic. Geneva: report of a WHO consultation on obesity.

Zanoli, L., Lentini, P., Briet, M., Castellino, P., House, A. A., London, G. M., Malatino, L., McCullough, P. A., Mikhailidis, D. P., Boutouyrie, P (2019). Arterial Stiffness in the Heart Disease of CKD. J Am Soc Nephrol, 30(6):918-928. doi: 10.1681/ASN.2019020117. Epub 2019 Apr 30.

Zhang, K., Li, Q., Chen, Y., Wang, N., Lu, Y (2017). Visceral adiposity and renal function: an observational study from SPECT-China. Lipids Health Dis, 27;16(1):205. doi: 10.1186/s12944-017-0597-0.

Zhang, X. H., Zhang, M., He, J., Yan, Y. Z., Ma, J. L., Wang, K., Ma, R. L., Guo, H., Um, L. T., Ding, Y. S., Zhang, J. Y., Liu, J. M., Li, S. G., Niu, Q., Rui, D. S., Guo, S. X (2016). Comparison of Anthropometric and Atherogenic Indices as Screening Tools of Metabolic Syndrome in the Kazakh Adult Population in Xinjiang. Int J Environ Res Public Health, 16;13(4):428. doi: 10.3390/ijerph13040428. PMID: 27092520;

Zou, Y., Sheng, G., Yu, M., Xie, G (2020). The association between triglycerides and ectopic fat obesity: An inverted U-shaped curve. PLoS One, 30;15(11):e0243068. doi: 10.1371/journal.pone.0243068.

Downloads

Publicado

19/01/2022

Como Citar

PINHEIRO, A. D. V. .; SOUSA, F. I. da S. e; LINHARES, D. E. B. A. .; BRAGA, R. A. M. .; GALDINO, R. S.; PINTO, F. J. M. .; MAIA, C. S. C. . O índice de produtos de acumulação lipídica como bom preditor de risco cardiovascular em pacientes com doença renal crônica em hemodiálise. Research, Society and Development, [S. l.], v. 11, n. 2, p. e10611225401, 2022. DOI: 10.33448/rsd-v11i2.25401. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25401. Acesso em: 22 dez. 2024.

Edição

Seção

Ciências da Saúde