Avaliação de compostos cerâmicos à base de Al2O3-SiO2-ZrO2 sintetizados via sol-gel

Autores

DOI:

https://doi.org/10.33448/rsd-v11i2.25616

Palavras-chave:

Bioceramica; Aplicações oftalmológicas; Sol-Gel.

Resumo

Existem poucos trabalhos na literatura sobre o estudo e desenvolvimento de novos compostos biocerâmicos para aplicações oftalmológicas, especialmente considerando o uso de tecnologias laboratoriais avançadas como o processo sol-gel, que apresenta a possibilidade de controlar vários parâmetros como temperatura, estequiometria e alcalinidade. Nesse sentido, o presente trabalho sintetizou compostos biocerâmicos à base de alumina em combinação com sílica e zircônia pelo processo sol-gel, avaliando a possibilidade/viabilidade desses biomateriais para reconstrução orbital. Os materiais foram caracterizados por Difração de Raios X (DRX), Espectroscopia no Infravermelho com Transformada de Fourier (FTIR) e Microscopia Eletrônica de Varredura (MEV). Os resultados mostram a formação de diferentes estruturas, com tendência a formar alfa alumina, sílica na forma de mulita ortorrômbica e zircônia em suas fases monoclínica e tetragonal, demonstrada pelas ligações de reação características entre os precursores, conforme observado no ensaio FTIR. A caracterização morfológica destacou que o fator mais determinante que influencia o tamanho do aglomerado é a temperatura, seguida da concentração de sílica. Esses resultados são relevantes para aplicações oftalmológicas, considerando as propriedades intrínsecas de cada óxido.

Referências

Agliullin, M. R., Danilova, I. G., Faizullin, A. V., Amarantov, S. V., Bubennov, S. V., Prosochkina, T. R., Grigor’Eva, N. G., Paukshtis, E. A. & Kutepov, B. I. (2016). Sol-gel synthesis of mesoporous aluminosilicates with a narrow pore size distribution and catalytic activity thereof in the oligomerization of dec-1-ene. Microporous and Mesoporous Materials, 230, 118-127.

Baino, F. & Vitale-Brovarone, C. (2014). Bioceramics in ophthalmology. Acta Biomaterialia, 10 (8), 3372-3397.

Chao, D. L. & Harbour, J. W. (2015). Hydroxyapatite versus polyethylene orbital implants for patients undergoing enucleation for uveal melanoma. Canadian Journal of Ophthalmology, 50, 151-154.

Chung, W. S., Song, S. J., Lee, S. H. & Kim, E. A. (2005). Fibrovascularization of intraorbital hydroxyapatite-coated alumina sphere in rabbits. Korean Journal of Ophthalmology, 19, 9-17.

Cui, F. Z., Nelson, B., Peng, Y., Li, K., Pilla, S., Li, W. J., Turng, L-S. & Shen, C. (2012). Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering. Materials Science and Engineering: C, 32, 1674-1681.

Cui, F. Z., Wen, H. B., Zhang, H. B., Ma, C. L. & Li, H. D. (1994). Nanophase hydroxyapatite-like crystallites in natural ivory. Journal of Materials Science Letters, 13, 1042-1044.

Devikala, S., Kamaraj, P. & Arthanareeswar, M. (2019). AC conductivity studies of PVA/Al2O3 composites. Materials Today: Proceedings, 14, 288-295.

Farahmandjou, M. & Motaghi, S. (2019). Sol-gel synthesis of Ce-doped α-Al2O3: Study of crystal and optoelectronic properties. Optics Communications, 441, 1–7.

Iqbal, M. M. A., Bakar, W. A., Toemen, S., Razak, F. I. A. & Azelee, N. I. W. N. (2020). Optimizationstudyby Box-Behnken design (BBD) and mechanistic insight of CO2 methanation over Ru-Fe-Ce/γ-Al2O3 catalyst by in-situ FTIR Technique. Arabian Journal of Chemistry, 13 (2), 4170-4179.

Jean, M. S. (2013). Introduction to molecular vibration and infrared spectroscopy. Chemistry, 362, 1-9.

Jodati, H., Yılmaz, B. & Evis, Z. (2020). A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceramics International, 46 (10, Part B), 15725-15739.

Jordan, D. R., Brownstein, S., Gilberg, S., Coupal, D., Kim, S. & Mawn, L. (2002). Hydroxyapatite and calcium phosphate coatings on aluminium oxide orbital implants. Canadian Journal of Ophthalmology, 37, 7-13.

Kessman, A. J., Ramji, K., Morris, N. J. & Cairns, D. R. (2009). Zirconia sol-gel coatings on alumina–silica refractory material for improved corrosion resistance. Surface & Coatings Technology, 204, 477–483.

Li, W., Liu, X., Huang, A. & Chu, P. K. (2007). Structure and properties of zirconia (ZrO2) films fabricated by plasma-assisted cathodic arc deposition. Journal of Physics D: Applied Physics, 40, 2293-2299.

Mamivand, M., Zaeem, M. A., Kadiri, H. E. & Chen, L. Q. (2013). Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia. Acta Materialia, 61, 5223-5235.

Mehta, J. S., Futter, C. E., Sandeman, S. R., Faragher, R. G., Hing, K. A., Tanner, K. E. & Allan, B. D. (2005). Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials. British Journal of Ophthalmology, 89, 1356-1362.

Nariyal, R. K., Kothari, P. & Bisht, B. (2014). FTIR Measurements of SiO2 Glass Prepared by Sol-Gel Technique. Chemical Science Transactions, 3, 1064-1066.

Ono, I., Gunji, H., Suda, K., Kaneko, F. & Yago, K. (1994). Orbital reconstruction with hydroxyapatite ceramic implants, Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 28, 193-198.

Owens, G. J., Sing, R. K., Foroutan, H. F., Alqaysi, M., Han, C. M., Mahapatra, C., Kim, W-K. & Knowles, J. C. (2016). Sol-gel based materials for biomedical applications. Progress in Materials Science, 77, 1-79.

Padovini, D. S. S., Magdalena, A. G., Capeli, R. G., Longo, E., Dalmaschio, C. J., Chiquito, A. J. & Pontes, F. M. (2019). Synthesis and characterization of ZrO2@SiO2 core-shell nanostructure as nanocatalyst: Application for environmental remediation of rhodamine B dye aqueous solution. Materials Chemistry and Physics, 233, 1-8.

Ramalla, I., Gupta, R. K. & Bansal, K. (2015). Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique atpolluted areas for longer life and reliability. International Journal of Engineering & Technology, 4, 509-519.

Saleh, L. S. & Bryant, S. J. (2018). The Host Response in Tissue Engineering: Crosstalk Between Immune cells and Cell-laden Scaffolds. Current Opinion in Biomedical Engineering, 6, 58-65.

Toemen, S., Bakar, W. A. & Ali, R. (2017). CO2/H2 methanation technology of strontia based catalyst: physic chemical andoptimisation studies by Box–Behnken design. Journal of Cleaner Production, 146, 71-82.

Xu, Su., Kou, H., Guo, Y. & Ning, C. (2019). Highly dense Ca5(PO4)2SiO4 bioceramics with ultrafine microstructure prepared by pressureless sintering. Ceramics International, 45 (17, Part B), 23728-23733.

Downloads

Publicado

26/01/2022

Como Citar

ARAÚJO, D. dos S. .; MACÊDO, M. D. M. .; PEDROSA, T. C. .; SOUSA, W. J. B. .; BARBOSA, R. C. .; TAVARES, A. A. .; FOOK, M. V. L. .; BURITI, J. da S. . Avaliação de compostos cerâmicos à base de Al2O3-SiO2-ZrO2 sintetizados via sol-gel . Research, Society and Development, [S. l.], v. 11, n. 2, p. e33211225616, 2022. DOI: 10.33448/rsd-v11i2.25616. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25616. Acesso em: 30 jun. 2024.

Edição

Seção

Engenharias