Mortalidade e alterações de parâmetros laboratoriais na presença de culturas positivas para bactérias e fungos em pacientes críticos com COVID-19 em hospital terciário de ensino de Mato Grosso do Sul, Brasil
DOI:
https://doi.org/10.33448/rsd-v11i2.25992Palavras-chave:
COVID-19; Prognóstico; D-dímero; Perfil microbiológico.Resumo
O objetivo do presente estudo foi avaliar a mortalidade e as alterações de parâmetros laboratoriais na presença de culturas positivas para bactérias e fungos em pacientes COVID-19 positivos admitidos nos CTIs, em um hospital terciário de ensino de Mato Grosso do Sul. Trata-se de um estudo observacional retrospectivo realizado por meio de coleta de dados clínicos e laboratoriais de pacientes adultos admitidos nos CTIs, com diagnóstico confirmado para SARS-CoV-2, entre os meses de julho e agosto de 2020. A presença de ao menos uma cultura positiva em pacientes críticos com COVID-19 foi associada a maiores taxas de mortalidade, maiores períodos de internação, e a maiores níveis de D-dímero e PCR. Pacientes do sexo masculino foram mais propensos a culturas positivas, e idades mais avançadas foram associadas a contagens plaquetárias mais baixas. Contagens de leucócitos mais elevadas e contagens plaquetárias mais baixas foram também associadas a maiores taxas de mortalidade. As culturas que apresentaram maior taxa de positividade foram as culturas de aspirado traqueal. Os principais microrganismos encontrados nos exames de cultura foram a levedura Candida albicans e as espécies de Staphylococcus coagulase negativas. As bactérias Acinetobacter baumannii e Klebsiella pneumoniae destacaram-se por apresentarem perfis de resistência mais frequentes. Nota-se, portanto, a importância da adoção de medidas que previnam infecções hospitalares secundárias em pacientes com COVID-19 e o desenvolvimento de mecanismos de resistência por microrganismos de relevância clínica. O laboratório destaca-se na identificação desses microrganismos e no direcionamento para o uso de antibióticos e antifúngicos mais apropriados para cada caso específico.
Referências
Agarwal, N., Dua, D., Sud, R., Yadav, M., Agarwal, A., & Vijayan, V. (2021). COVID-19 mortality prediction model, 3C-M, built for use in resource-limited settings understanding the relevance of neutrophilic leukocytosis in predicting disease severity and mortality. medRxiv.
Ahlström, B., Frithiof, R., Hultström, M., Larsson, I. M., Strandberg, G., & Lipcsey, M. (2021). The swedish covid‐19 intensive care cohort: Risk factors of ICU admission and ICU mortality. Acta Anaesthesiologica Scandinavica, 65(4), 525-533.
Alegre-González, D., Herrera, S., Bernal, J., Soriano, A., & Bodro, M. (2021). Disseminated Cryptococcus neoformans infection associated to COVID-19. Medical mycology case reports, 34, 35-37.
Alhasan, K. A., Shalaby, M. A., Temsah, M. H., Aljamaan, F., Shagal, R., AlFaadhel, T., ... & Kari, J. A. (2021, December). Factors That Influence Mortality in Critically Ill Patients with SARS-CoV-2 Infection: A Multicenter Study in the Kingdom of Saudi Arabia. In Healthcare (Vol. 9, No. 12, p. 1608). Multidisciplinary Digital Publishing Institute.
Ali, G. A., Husain, A., Salah, H., & Goravey, W. (2021). Trichosporon asahii fungemia and COVID-19 co-infection: An emerging fungal pathogen; case report and review of the literature. IDCases, 25, e01244.
ANVISA. Agência Nacional de Vigilância em Saúde (2004). Manual de Microbiologia Clínica para o Controle de Infecção em Serviços de Saúde. Edição Comemorativa para o IX Congresso Brasileiro de Controle de Infecção e Epidemiologia Hospitalar Salvador, 30 de agosto a 3 de setembro de 2004. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/manual_microbiologia_completo.pdf. Acesso em: 18 de dez. 2021.
ANVISA. Agência Nacional de Vigilância Sanitária. (2021). Prevenção de infecções por microrganismos multirresistentes em serviços de saúde. Segurança do Paciente e Qualidade em Serviços de Saúde. https://pncq.org.br/wp-content/uploads/2021/03/manual-prevencao-de-multirresistentes7.pdf. Acesso em: 18 de dez. 2021.
Azienda Ospedaliera, S. (2020). COVID-19 Airway management and ventilation strategy for critically ill older patients. N. Vargas, & A. M. Esquinas (Eds.). Springer International Publishing.
Azoulay, E., Timsit, J. F., Tafflet, M., de Lassence, A., Darmon, M., Zahar, J. R., ... & Outcomerea Study Group. (2006). Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest, 129(1), 110-117.
Balduini, C. L., & Noris, P. (2014). Platelet count and aging. Haematologica, 99(6), 953.
Balkhair, A., Al-Muharrmi, Z., Al’Adawi, B., Al Busaidi, I., Taher, H. B., Al-Siyabi, T., ... & Hassan, K. S. (2019). Prevalence and 30-day all-cause mortality of carbapenem-and colistin-resistant bacteraemia caused by Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae: description of a decade-long trend. International Journal of Infectious Diseases, 85, 10-15.
Baskaran, V., Lawrence, H., Lansbury, L. E., Webb, K., Safavi, S., Zainuddin, N. I., ... & Lim, W. S. (2021). Co-infection in critically ill patients with COVID-19: an observational cohort study from England. Journal of medical microbiology, 70(4).
Bengoechea, J. A., & Bamford, C. G. (2020). SARS‐CoV‐2, bacterial co‐infections, and AMR: the deadly trio in COVID‐19?. EMBO molecular medicine, 12(7), e12560.
Biino, G., Balduini, C. L., Casula, L., Cavallo, P., Vaccargiu, S., Parracciani, D., ... & Pirastu, M. (2011). Analysis of 12,517 inhabitants of a Sardinian geographic isolate reveals that predispositions to thrombocytopenia and thrombocytosis are inherited traits. Haematologica, 96(1), 96.
Biino, G., Santimone, I., Minelli, C., Sorice, R., Frongia, B., Traglia, M., ... & Balduini, C. L. (2013). Age-and sex-related variations in platelet count in Italy: a proposal of reference ranges based on 40987 subjects' data. PloS one, 8(1), e54289.
Bogossian, E. G., Taccone, F. S., Izzi, A., Yin, N., Garufi, A., Hublet, S., ... & Grimaldi, D. (2020). The acquisition of multidrug-resistant bacteria in patients admitted to COVID-19 intensive care units: a monocentric retrospective case control study. Microorganisms, 8(11), 1821.
Bonaccio, M., Di Castelnuovo, A., Costanzo, S., De Curtis, A., Donati, M. B., Cerletti, C., ... & Iacoviello, L. (2016). Age-sex-specific ranges of platelet count and all-cause mortality: prospective findings from the MOLI-SANI study. Blood, 127(12), 1614-6.
Brasil, V. (2021). Boletim epidemiológico especial. Doença pelo coronavírus COVID-19. Semana epidemiológica 6. https://www.gov.br/saude/pt- br/media/pdf/2021/fevereiro/19/boletim_epidemiologico_covid_50-1.pdf.
Caramelo, F., Ferreira, N., & Oliveiros, B. (2020). Estimation of risk factors for COVID-19 mortality-preliminary results. MedRxiv.
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., ... & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The lancet, 395(10223), 507-513.
Ciaglia, E., Vecchione, C., & Puca, A. A. (2020). COVID-19 infection and circulating ACE2 levels: protective role in women and children. Frontiers in pediatrics, 8, 206.
Ciurea, C. N., Santini, A., Mare, A. D., Kosovski, I. B., Toma, F., Vintila, C., ... & Man, A. (2021). Candida spp. in Lower Respiratory Tract Secretions–A Ten Years Retrospective Study.
Daud-Gallotti, R. M., Costa, S. F., Guimarães, T., Padilha, K. G., Inoue, E. N., Vasconcelos, T. N., ... & Levin, A. S. (2012). Nursing workload as a risk factor for healthcare associated infections in ICU: a prospective study. PloS one, 7(12), e52342.
de Oliveira Sá, P. K., Silva, S. A., de Araújo, C. L., Cavalca, G. V. S., de Lira, C. A. G., Silva, E. K. R., ... & Nóbrega, R. T. Q. (2021). Pneumonia associada à ventilação mecânica em pacientes com covid‐19: avaliação das culturas de aspirados traqueais. The Brazilian Journal of Infectious Diseases, 25, 101089.
Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.
Falagas, M. E., Mourtzoukou, E. G., & Vardakas, K. Z. (2007). Sex differences in the incidence and severity of respiratory tract infections. Respiratory medicine, 101(9), 1845-1863.
Ferrando, C., Mellado-Artigas, R., Gea, A., Arruti, E., Aldecoa, C., Bordell, A., ... & Hernández-Sanz, M. L. (2020). Patient characteristics, clinical course and factors associated to ICU mortality in critically ill patients infected with SARS-CoV-2 in Spain: a prospective, cohort, multicentre study. Revista Española de Anestesiología y Reanimación (English Edition), 67(8), 425-437.
Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature reviews microbiology, 13(5), 269-284.
Garcia-Vidal, C., Sanjuan, G., Moreno-García, E., Puerta-Alcalde, P., Garcia-Pouton, N., Chumbita, M., ... & Torres, A. (2021). Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clinical Microbiology and Infection, 27(1), 83-88.
Global Health 50/50. (2021). COVID-19 Sex-disaggregated data tracker. https://globalhealth5050.org/the-sex-gender-and-covid-19-project/.
Goyal, P., Choi, J. J., Pinheiro, L. C., Schenck, E. J., Chen, R., Jabri, A., ... & Safford, M. M. (2020). Clinical characteristics of Covid-19 in New York city. New England Journal of Medicine, 382(24), 2372-2374.
Haitao, T., Vermunt, J., Abeykoon, J., Ghamrawi, R., Gunaratne, M., Jayachandran, M., ... & Garovic, V. (2020, August). COVID-19 and sex differences: mechanisms and biomarkers. In Mayo clinic proceedings. Elsevier.
Hall, K. K., & Lyman, J. A. (2006). Updated review of blood culture contamination. Clinical microbiology reviews, 19(4), 788-802.
He, S., Liu, W., Jiang, M., Huang, P., Xiang, Z., Deng, D., ... & Xie, L. (2021). Clinical characteristics of COVID-19 patients with clinically diagnosed bacterial co-infection: A multi-center study. Plos one, 16(4), e0249668.
Hosoda, T., Harada, S., Okamoto, K., Ishino, S., Kaneko, M., Suzuki, M., ... & Mizoguchi, M. (2021). COVID-19 and fatal sepsis caused by hypervirulent Klebsiella pneumoniae, Japan, 2020. Emerging infectious diseases, 27(2), 556.
Ibañez, C., Perdomo, J., Calvo, A., Ferrando, C., Reverter, J. C., Tassies, D., & Blasi, A. (2021). High D dimers and low global fibrinolysis coexist in COVID19 patients: what is going on in there?. Journal of thrombosis and thrombolysis, 51(2), 308-312.
Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., ... & Penninger, J. M. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436(7047), 112-116.
Jacobs, D. M., Dilworth, T. J., Beyda, N. D., Casapao, A. M., & Bowers, D. R. (2017). Overtreatment of asymptomatic candiduria among hospitalized patients: a multi-institutional study. Antimicrobial agents and chemotherapy, 62(1), e01464-17.
Khatib, M. Y., Ahmed, A. A., Shaat, S. B., Mohamed, A. S., & Nashwan, A. J. (2021). Cryptococcemia in a patient with COVID‐19: A case report. Clinical case reports, 9(2), 853-855.
Kim, Y. J., Im, S., Jang, Y. J., Park, S. Y., Sohn, D. G., & Park, G. Y. (2015). Diagnostic value of elevated D-dimer level in venous thromboembolism in patients with acute or subacute brain lesions. Annals of rehabilitation medicine, 39(6), 1002.
Koehler, P., Cornely, O. A., Böttiger, B. W., Dusse, F., Eichenauer, D. A., Fuchs, F., ... & Shimabukuro‐Vornhagen, A. (2020). COVID‐19 associated pulmonary aspergillosis. Mycoses, 63(6), 528-534.
Kokkoris, S., Papachatzakis, I., Gavrielatou, E., Ntaidou, T., Ischaki, E., Malachias, S., ... & Routsi, C. (2021). ICU-acquired bloodstream infections in critically ill patients with COVID-19. Journal of Hospital Infection, 107, 95-97.
Lansbury, L., Lim, B., Baskaran, V., & Lim, W. S. (2020). Co-infections in people with COVID-19: a systematic review and meta-analysis. Journal of Infection, 81(2), 266-275.
Li, J., Wang, J., Yang, Y., Cai, P., Cao, J., Cai, X., & Zhang, Y. (2020). Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: a retrospective analysis. Antimicrobial Resistance & Infection Control, 9(1), 1-7.
Li, Y., Zhao, K., Wei, H., Chen, W., Wang, W., Jia, L., ... & Yan, X. (2020). Dynamic relationship between D‐dimer and COVID‐19 severity. British journal of haematology.
Liu, Y., Sun, W., Guo, Y., Chen, L., Zhang, L., Zhao, S., ... & Yu, L. (2020). Association between platelet parameters and mortality in coronavirus disease 2019: Retrospective cohort study. Platelets, 31(4), 490-496.
Lusczek, E. R., Ingraham, N. E., Karam, B. S., Proper, J., Siegel, L., Helgeson, E. S., ... & Tignanelli, C. J. (2021). Characterizing COVID-19 clinical phenotypes and associated comorbidities and complication profiles. PloS one, 16(3), e0248956.
Lv, Z., Cheng, S., Le, J., Huang, J., Feng, L., Zhang, B., & Li, Y. (2020). Clinical characteristics and co-infections of 354 hospitalized patients with COVID-19 in Wuhan, China: a retrospective cohort study. Microbes and infection, 22(4-5), 195-199.
Mahmoudi, H. (2020). Bacterial co-infections and antibiotic resistance in patients with COVID-19. GMS hygiene and infection control, 15.
Martin-Loeches, I., Lemiale, V., Geoghegan, P., McMahon, M. A., Pickkers, P., Soares, M., ... & Azoulay, E. (2019). Influenza and associated co-infections in critically ill immunosuppressed patients. Critical Care, 23(1), 1-10.
Martins, L. B. Infecção por SARS-CoV-2 e coinfecções/superinfecções bacterianas: uma revisão integrativa da literatura.
Mastrangelo, A., Germinario, B. N., Ferrante, M., Frangi, C., Li Voti, R., Muccini, C., & Ripa, M. (2021). Candidemia in coronavirus disease 2019 (COVID-19) patients: incidence and characteristics in a prospective cohort compared with historical non–COVID-19 controls. Clinical Infectious Diseases, 73(9), e2838-e2839.
McWilliam, S., & Riordan, A. (2010). How to use: C-reactive protein. Archives of Disease in Childhood-Education and Practice, 95(2), 55-58.
Mjaess, G., Karam, A., Aoun, F., Albisinni, S., & Roumeguère, T. (2020). COVID-19 and the male susceptibility: the role of ACE2, TMPRSS2 and the androgen receptor. Progrès en urologie, 30(10), 484-487.
Musuuza, J. S., Watson, L., Parmasad, V., Putman-Buehler, N., Christensen, L., & Safdar, N. (2021). Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PloS one, 16(5), e0251170.
Najera, H., & Ortega-Avila, A. G. (2021). Health and Institutional Risk Factors of COVID-19 Mortality in Mexico, 2020. American journal of preventive medicine, 60(4), 471-477.
Nasir, N., Farooqi, J., Mahmood, S. F., & Jabeen, K. (2020). COVID‐19‐associated pulmonary aspergillosis (CAPA) in patients admitted with severe COVID‐19 pneumonia: An observational study from Pakistan. Mycoses, 63(8), 766-770.
Nebreda-Mayoral, T., Miguel-Gómez, M. A., March-Rosselló, G. A., Puente-Fuertes, L., Cantón-Benito, E., Martínez-García, A. M., ... & Orduña-Domingo, A. (2020). Infección bacteriana/fúngica en pacientes con COVID-19 ingresados en un hospital de tercer nivel de Castilla y León, España. Enfermedades Infecciosas y Microbiología Clínica.
Nucci, M., Barreiros, G., Guimarães, L. F., Deriquehem, V. A., Castiñeiras, A. C., & Nouér, S. A. (2021). Increased incidence of candidemia in a tertiary care hospital with the COVID‐19 pandemic. Mycoses, 64(2), 152-156.
Orsini, M. A., do Nascimento, J. S. F., Nunes, N. S. M., do Nascimento, J. K. F., Azizi, M., Cardoso, C. E., & Pereira, T. M. A. (2020). Coagulação intravascular disseminada e covid-19: mecanismos fisiopatológicos. Revista De Saúde, 11(1), 87-90.
Paczosa, M. K., & Mecsas, J. (2016). Klebsiella pneumoniae: going on the offense with a strong defense. Microbiology and Molecular Biology Reviews, 80(3), 629-661.
Pappas, P. G., Kauffman, C. A., Andes, D. R., Clancy, C. J., Marr, K. A., Ostrosky-Zeichner, L., ... & Sobel, J. D. (2016). Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 62(4), e1-e50.
Pemán, J., Ruiz-Gaitán, A., García-Vidal, C., Salavert, M., Ramírez, P., Puchades, F., ... & Quindós, G. (2020). Fungal co-infection in COVID-19 patients: Should we be concerned?. Revista iberoamericana de micologia, 37(2), 41-46.
Pereira, M. S., do Prado, M. A., de Sousa, J. T., Tipple, A. F. V., & Silva, A. C. (2000). Controle de Infecção Hospitalar em Unidade de terapia Intensiva: desafios e perspectivas. Revista Eletrônica de Enfermagem, 2(1).
Perez, F., Endimiani, A., Ray, A. J., Decker, B. K., Wallace, C. J., Hujer, K. M., ... & Bonomo, R. A. (2010). Carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae across a hospital system: impact of post-acute care facilities on dissemination. Journal of Antimicrobial Chemotherapy, 65(8), 1807-1818.
Perlee, D., De Beer, R., Florquin, S., van der Poll, T., van’t Veer, C., & De Vos, A. F. (2020). Caspase-11 contributes to pulmonary host defense against Klebsiella pneumoniae and local activation of coagulation. American Journal of Physiology-Lung Cellular and Molecular Physiology, 319(1), L105-L114.
Ramadan, H. K. A., Mahmoud, M. A., Aburahma, M. Z., Elkhawaga, A. A., El-Mokhtar, M. A., Sayed, I. M., ... & Medhat, M. A. (2020). Predictors of severity and co-infection resistance profile in COVID-19 patients: first report from upper egypt. Infection and drug resistance, 13, 3409.
Rawson, T. M., Moore, L. S., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M., ... & Holmes, A. (2020). Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clinical Infectious Diseases, 71(9), 2459-2468.
Rouze, A., Martin-Loeches, I., Povoa, P., Metzelard, M., Du Cheyron, D., Lambiotte, F., ... & coVAPid Study Group. (2021). Early Bacterial Identification among Intubated Patients with COVID-19 or Influenza Pneumonia: A European Multicenter Comparative Clinical Trial. American journal of respiratory and critical care medicine, 204(5), 546.
Ruiz-Bastián, M., Falces-Romero, I., Ramos-Ramos, J. C., de Pablos, M., García-Rodríguez, J., & SARS-CoV-2 Working Group. (2021). Bacterial co-infections in COVID-19 pneumonia in a tertiary care hospital: Surfing the first wave. Diagnostic Microbiology and Infectious Disease, 101(3), 115477.
Sanyaolu, A., Okorie, C., Marinkovic, A., Patidar, R., Younis, K., Desai, P., ... & Altaf, M. (2020). Comorbidity and its impact on patients with COVID-19. SN comprehensive clinical medicine, 1-8.
Sayad, B., Afshar, Z. M., Mansouri, F., & Rahimi, Z. (2020). Leukocytosis and alteration of hemoglobin level in patients with severe COVID‐19: Association of leukocytosis with mortality. Health science reports, 3(4).
Seagle, E. E., Jackson, B. R., Lockhart, S. R., Georgacopoulos, O., Nunnally, N. S., Roland, J., ... & Lyman, M. M. (2021). The landscape of candidemia during the COVID-19 pandemic. Clin. infect. dis.
Segal, J. B., & Moliterno, A. R. (2006). Platelet counts differ by sex, ethnicity, and age in the United States. Annals of epidemiology, 16(2), 123-130.
Segrelles-Calvo, G., Glauber, R. D. S., Llopis-Pastor, E., & Frasés, S. (2021). Trichosporon asahii as cause of nosocomial pneumonia in patient with COVID-19: a triple Co-infection. Archivos de bronconeumologia, 57, 46.
Sepulveda, J., Westblade, L. F., Whittier, S., Satlin, M. J., Greendyke, W. G., Aaron, J. G., ... & Green, D. A. (2020). Bacteremia and blood culture utilization during COVID-19 surge in New York City. Journal of clinical microbiology, 58(8), e00875-20.
Sheng, W. H., Chie, W. C., Chen, Y. C., Hung, C. C., Wang, J. T., & Chang, S. C. (2005). Impact of nosocomial infections on medical costs, hospital stay, and outcome in hospitalized patients. Journal of the Formosan Medical Association, 104(5), 318-326.
Silva, D. L., Lima, C. M., Magalhães, V. C., Baltazar, L. M., Peres, N. T., Caligiorne, R. B., ... & Santos, D. A. (2021). Fungal and bacterial coinfections increase mortality of severely ill COVID-19 patients. Journal of Hospital Infection, 113, 145-154.
Singhal, T. (2020). A review of coronavirus disease-2019 (COVID-19). The indian journal of pediatrics, 87(4), 281-286.
Smeeth, L., Cook, C., Thomas, S., Hall, A. J., Hubbard, R., & Vallance, P. (2006). Risk of deep vein thrombosis and pulmonary embolism after acute infection in a community setting. The Lancet, 367(9516), 1075-1079.
Soto, A., Quiñones-Laveriano, D. M., Valdivia, F., Juscamayta-López, E., Azañero-Haro, J., Chambi, L., ... & De la Cruz-Vargas, J. A. (2021). Detection of viral and bacterial respiratory pathogens identified by molecular methods in COVID-19 hospitalized patients and its impact on mortality and unfavorable outcomes. Infection and Drug Resistance, 14, 2795.
Sturdy, A., Basarab, M., Cotter, M., Hager, K., Shakespeare, D., Shah, N., ... & Arnold, A. (2020). Severe COVID-19 and healthcare-associated infections on the ICU: time to remember the basics?. Journal of Hospital Infection, 105(4), 593-595.
Tavares, C. D. A. M., Avelino-Silva, T. J., Benard, G., Cardozo, F. A. M., Fernandes, J. R., Girardi, A. C. C., & Jacob, W. (2020). Ace2 expression and risk factors for covid-19 severity in patients with advanced age. Arquivos Brasileiros de Cardiologia, 115, 701-707.
Thyagarajan, R. V., Mondy, K. E., & Rose, D. T. (2021). Cryptococcus neoformans blood stream infection in severe COVID-19 pneumonia. IDCases, 26, e01274.
Tiri, B., Sensi, E., Marsiliani, V., Cantarini, M., Priante, G., Vernelli, C., ... & Cappanera, S. (2020). Antimicrobial stewardship program, COVID-19, and infection control: Spread of carbapenem-resistant Klebsiella pneumoniae colonization in ICU COVID-19 patients. What did not work?. Journal of clinical medicine, 9(9), 2744.
Tumbarello, M., Viale, P., Viscoli, C., Trecarichi, E. M., Tumietto, F., Marchese, A., ... & Bassetti, M. (2012). Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase–producing K. pneumoniae: importance of combination therapy. Clinical infectious diseases, 55(7), 943-950.
Tyrrell, D. A., Alexander, D. J., Almeida, J. D., Cunningham, C. H., Easterday, B. C., Garwes, D. J., ... & McIntosh, K. (1978). Coronaviridae: second report. Intervirology, 10(6), 321-328.
Van Laethem, J., Wuyts, S., Pierreux, J., Seyler, L., Verschelden, G., Depondt, T., ... & Allard, S. D. (2021). Presumed Urinary Tract Infection in Patients Admitted with COVID-19: Are We Treating Too Much?. Antibiotics, 10(12), 1493.
Wakabayashi, T., & Iwata, H. (2021). Outcome, diagnosis, and microbiological profile comparison of community‐and hospital‐acquired bacteremia: A retrospective cohort study. Journal of General and Family Medicine.
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., ... & Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama, 323(11), 1061-1069.
Weitz, J. I., Fredenburgh, J. C., & Eikelboom, J. W. (2017). A test in context: D-dimer. Journal of the American College of Cardiology, 70(19), 2411-2420.
Westblade, L. F., Simon, M. S., & Satlin, M. J. (2021). Bacterial Co-Infections in Coronavirus Disease 2019. Trends in microbiology.
Yi, Y., Lagniton, P. N., Ye, S., Li, E., & Xu, R. H. (2020). COVID-19: what has been learned and to be learned about the novel coronavirus disease. International journal of biological sciences, 16(10), 1753.
Yu, D., Ininbergs, K., Hedman, K., Giske, C. G., Strålin, K., & Özenci, V. (2020). Low prevalence of bloodstream infection and high blood culture contamination rates in patients with COVID-19. PloS one, 15(11), e0242533.
Yuki, K., Fujiogi, M., & Koutsogiannaki, S. (2020). COVID-19 pathophysiology: A review. Clinical immunology, 215, 108427.
Zhao, X., Wang, K., Zuo, P., Liu, Y., Zhang, M., Xie, S., ... & Liu, C. (2020). Early decrease in blood platelet count is associated with poor prognosis in COVID-19 patients—indications for predictive, preventive, and personalized medical approach. The EPMA Journal, 11(2), 139.
Zhu, X., Ge, Y., Wu, T., Zhao, K., Chen, Y., Wu, B., ... & Cui, L. (2020). Co-infection with respiratory pathogens among COVID-2019 cases. Virus Research, 285, 198005.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Giulia Rodrigues Stringhetta; Bruna Abdul Ahad Saad; Eliane Borges de Almeida
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.