Estudo do Impacto das Decisões Sanitárias sobre a Qualidade da Água Utilizando Redes de Crenças Bayesianas na Bacia do Pantanal do Alto Pantanal – Brasil
DOI:
https://doi.org/10.33448/rsd-v11i3.26309Palavras-chave:
Esgoto; Urbanização; Ecologia do rio.Resumo
Bayesian Belief Networks (BBN) modelar a qualidade da água tornou-se popular devido aos avanços nas técnicas computacionais. Para este caso, o BBN é uma ferramenta útil para modelar a relação entre dados de qualidade da água e parâmetros populacionais ou de urbanização em uma escala de bacia hidrográfica. Esse método pode combinar dados primários de qualidade da água e parâmetros de decisão e ajudar cientistas e tomadores de decisão a analisar vários cenários em uma bacia hidrográfica, incluindo o efeito de escala. Este artigo tem como objetivo analisar e discutir a aplicação da Bayesian Belief Network (BBN) na relação entre a qualidade da água de uma bacia hidrográfica e os indicadores de gestão sanitária, estudando um caso na bacia afluente do Pantanal. Duas escalas BBN foram construídas usando dez anos de conjuntos de dados de qualidade da água e gestão de esgoto. Ambos os BBNs foram responsivos e sensíveis aos parâmetros de qualidade da água. O Nitrogênio Total e E. coli foram os parâmetros mais essenciais para simular mudanças nos cenários de qualidade da água. Os cenários simulados mostraram limitações estruturais sobre o sistema sanitário das Cidades do Pantanal do presente estudo. Recomendamos fortemente a revisão das metas de estrutura e serviços sanitários e alertamos para o risco de crise sanitária no Pantanal.
Referências
Ancione, G., Bragatto, P., & Milazzo, M. F. (2020). A Bayesian network-based approach for the assessment and management of ageing in major hazard establishments. Journal of Loss Prevention in the Process Industries, 104080. 10.1016/j.jlp.2020.104080
Avila, R., Horn, B., Moriarty, E., Hodson, R., & Moltchanova, E. (2018). Evaluating statistical model performance in water quality prediction. Journal of Environmental Management, 206, 910–919. 10.1016/j.jenvman.2017.11.049
Borrero-Ramírez, Y., & Mosquera-Becerra, J. (2020). Emancipation versus normality in the Global South. International Journal of Public Health. 10.1007/s00038-020-01466-4
Farooqi, Z. U. R., Sabir, M., Latif, J., Aslam, Z., Ahmad, H. R., Ahmad, I., Imran, M., & Ilić, P. (2019). Assessment of noise pollution and its effects on human health in industrial hub of Pakistan. Environmental Science and Pollution Research, 27(3), 2819–2828. 10.1007/s11356-019-07105-7
Fasaee, M. A. K., Berglund, E., Pieper, K. J., Ling, E., Benham, B., & Edwards, M. (2021). Developing a framework for classifying water lead levels at private drinking water systems: A Bayesian Belief Network approach. Water Research, 189, 116641. 10.1016/j.watres.2020.116641
Forio, M. A. E., Landuyt, D., Bennetsen, E., Lock, K., Nguyen, T. H. T., Ambarita, M. N. D., & Goethals, P. L. M. (2015). Bayesian belief network models to analyse and predict ecological water quality in rivers. Ecological Modelling, 312, 222–238. 10.1016/j.ecolmodel.2015.05.0
Garcia, B. H. Y., Olinda, R. A., Barbosa, D. S., & Mioto, C. L. (2020). Substantive audit testing of sewer systems using Brazilian open database: stat methods for compliance screening. Revista Ibero Americana de Ciências Ambientais, 11(6),716-724. 10.6008/CBPC2179-6858.2020.006.0057
Kang, G., Qiu, Y., Wang, Q., Qi, Z., Sun, Y., & Wang, Y. (2020). Exploration of the critical factors influencing the water quality in two contrasting climatic regions. Environmental Science and Pollution Research. 10.1007/s11356-020-07786-5
Liu, J., Liu, R., Zhang, Z., Cai, Y., & Zhang, L. (2019). A Bayesian Network-based risk dynamic simulation model for accidental water pollution discharge of mine tailings ponds at watershed-scale. Journal of Environmental Management, 246, 821–831. 10.1016/j.jenvman.2019.06.060
Mayfield, H. J., Bertone, E., Smith, C., & Sahin, O. (2019). Use of a structure aware discretisation algorithm for Bayesian networks applied to water quality predictions. Mathematics and Computers in Simulation. 10.1016/j.matcom.2019.07.005
Panidhapu, A., Li, Z., Aliashrafi, A., & Peleato, N. M. (2019). Integration of weather conditions for predicting microbial water quality using Bayesian Belief Networks. Water Research, 115349. 10.1016/j.watres.2019.115349
Pivello, V. R., Vieira, I., Christianini, A. V., Ribeiro, D. B., da Silva Menezes, L., Berlinck, C. N., Melo, F. P. L., Marengo, J. A., Tornquist, C. G., Tomas W. M., & Overbeck, G. E. (2021). Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation, 19(3), 233–255. 10.1016/j.pecon.2021.06.005
Ramin, M., Labencki, T., Boyd, D., Trolle, D., & Arhonditsis, G. B. (2012). A Bayesian synthesis of predictions from different models for setting water quality criteria. Ecological Modelling, 242, 127–145. 10.1016/j.ecolmodel.2012.05.0
Salman, R., Nikoo, M. R., Shojaeezadeh, S. A., Beiglou, P. H. B., Sadegh, M., Adamowski, J. F., & Alamdari, N. (2021). A novel Bayesian maximum entropy-based approach for optimal design of water quality monitoring networks in rivers. Journal of Hydrology, 603, 126822. 10.1016/j.jhydrol.2021.126822
Silva, M. O., Olinda, R. A., Mioto, C. L., & Barbosa, D. S. (2020). Análise plurianual da qualidade das águas de bacia tributária do Pantanal brasileiro. Revista Ibero Americana de Ciências Ambientais, 11(2), 172-181. 10.6008/CBPC2179-6858.2020.002.0019
Sha, J., Li, Z., Swaney, D. P., Hong, B., Wang, W., & Wang, Y. (2014). Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China. Water Resources Management, 28(11), 3681–3695. 10.1007/s11269-014-0696-x
Souza, A. V. V., & Loverde-Oliveira, S. M. (2014). Analysis of the water quality of the Rio Vermelho in Mato Grosso: during the flood season in 2014. Biodiversity, 13(2), 115-126.
Wan, R., Cai, S., Li, H., Yang, G., Li, Z., & Nie, X. (2014). Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China. Journal of Environmental Management, 133, 1–11. 10.1016/j.jenvman.2013.11.035
Wijesiri, B., Deilami, K., McGree, J., & Goonetilleke, A. (2018). Use of surrogate indicators for the evaluation of potential health risks due to poor urban water quality: A Bayesian Network approach. Environmental Pollution, 233, 655–661. 10.1016/j.envpol.2017.10.076
Zhang, M., Zhi, Y., Shi, J., & Wu, L. (2018). Apportionment and uncertainty analysis of nitrate sources based on the dual isotope approach and a Bayesian isotope mixing model at the watershed scale. Science of The Total Environment, 639, 1175–1187. 10.1016/j.scitotenv.2018.05.2
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Mayara Oliveira da Silva; Domingos Sávio Barbosa; Ricardo Alves de Olinda; Camila Leonardo Mioto
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.