Hidrogel antibacteriano de quitosana/vancomicina para aplicação em próteses de joelho
DOI:
https://doi.org/10.33448/rsd-v11i3.26646Palavras-chave:
Hidrogel; Quitosana; Vancomicina; Antibacteriano; Prótese de joelho.Resumo
Os hidrogéis de quitosana se destacam por ser uma matriz adesiva, que apresenta biocompatibilidade, propriedades antibacterianas, osteogênicas, biodegradabilidade, não toxicidade, capaz de reter, liberar e distribuir agentes terapêuticos (fármacos) no local de aplicação. Assim, novas estratégias no campo da ortopedia têm se concentrado, sobretudo, em limitar a adesão microbiana inicial pré e pós-operatória às superfícies dos implantes, modificando essas superfícies, protegendo-as de eventuais aderências ou liberando o agente antimicrobiano. A produção de hidrogéis à base de quitosana tem sido alcançada por meio de rotas físicas e químicas de reticulação. Neste contexto, este trabalho objetivou desenvolver um hidrogel antibacteriano à base de quitosana e vancomicina para aplicação em artroplastia total do joelho e evitar infecções bacterianas. Para tanto, foram investigados três procedimentos de reticulação da quitosana com a genipina para obtenção dos hidrogéis e carreamento de fármaco. Com essa finalidade, inicialmente, as matérias-primas quitosana, genipina e vancomicina foram caracterizadas por: espectroscopia no infravermelho (FTIR), microscopia eletrônica de varredura (MEV), difração de raios-X (DRX), pHmetria (pH) e testes microbiológicos. A partir dos procedimentos de reticulação química avaliados foram investigados a liberação do fármaco e caracterizados os hidrogéis por FTIR, pH, viscosidade, microbiologia e citotoxicidade. Foi obtido um novo hidrogel H5Q1GV com boa atividade antibacteriana potencializado pela acidez do seu pH 5,7, que apresentou boa liberação do fármaco nas primeiras 4 horas após implantação, homogêneo, apresentando viscosidade e adesão ideais para aplicação através de seringas em cirurgia de prótese de joelho e com excelente biocompatibilidade.
Referências
ANVISA. Agencia Nacional De Vigilância Sanitária. Resolução da diretoria colegiada- RDC nº 17, de 16 de Abril de 2010. www.anvisa.gov.br/legis>
Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. (2018). Comparative study on antimicrobial activity and biocompatibility of N-selective chitosan derivatives. Reactive and Functional Polymers, 124, 149-155.
Biao, L., Tan, S., Wang, Y., Guo, X., Fu, Y., Xu, F., Zu, Y., & Liu, Z. (2017). Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles. Materials Science Engineering: C, 76, 73-80.
Birt, M. C., Anderson, D. W., Toby, E. B., & Wang, J. (2017). Osteomyelitis: recent advances in pathophysiology and therapeutic strategies. Journal of orthopaedics, 14(1), 45-52.
Cai, Y., Xu, K., Hou, W., Yang, Z., & Xu, P. (2017). Preoperative chlorhexidine reduces the incidence of surgical site infections in total knee and hip arthroplasty: a systematic review and meta-analysis. International Journal of Surgery, 39, 221-228.
Carvalho, C. R., López-Cebral, R., Silva-Correia, J., Silva, J. M., Mano, J. F., Silva, T. H., Freier, T., Reis, R. L., & Oliveira, J. M. (2017). Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. Materials Science Engineering: C 71, 1122-1134.
Carvalho Júnior, L. H. d., Temponi, E. F., & Badet, R. (2013). Infecção em artroplastia total de joelho: diagnóstico e tratamento. Revista Brasileira de Ortopedia, 48(5), 389-396.
Cats-Baril, W., Gehrke, T., Huff, K., Kendoff, D., Maltenfort, M., & Parvizi, J. (2013). International consensus on periprosthetic joint infection: description of the consensus process. Clinical Orthopaedics and Related Research®, 471(12), 4065-4075.
Chang, T.-Y., Chen, C.-C., Cheng, K.-M., Chin, C.-Y., Chen, Y.-H., Chen, X.-A., Sun, J.-R., Young, J.-J., & Chiueh, T.-S. (2017). Trimethyl chitosan-capped silver nanoparticles with positive surface charge: their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. Colloids Surfaces B: Biointerfaces, 155, 61-70.
Cobra, H., Mozella, A. P., Labronici, P. J., Cavalcanti, A. S., & Guimaraes, J. A. M. (2021). Infection after primary total knee arthroplasty: a randomized controlled prospective study of the addition of antibiotics to bone cement. Revista Brasileira de Ortopedia
(5), 621-627.
Cox, S. C., Jamshidi, P., Eisenstein, N. M., Webber, M. A., Hassanin, H., Attallah, M. M., Shepherd, D. E., Addison, O., & Grover, L. M. (2016). Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants. Materials Science and Engineering: C, 64, 407-415.
Delgadillo-Armendariz, N. L., Rangel-Vazquez, N. A., Marquez-Brazon, E. A., & Gascue, R.-D. (2014). Interactions of chitosan/genipin hydrogels during drug delivery: a QSPR approach. Química Nova, 37(9), 1503-1509.
Demetgül, C., & Beyazit, N. (2018). Synthesis, characterization and antioxidant activity of chitosan-chromone derivatives. Carbohydrate polymers, 181, 812-817.
Dhawade, P. P., & Jagtap, R. N. (2012). Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv Appl Sci Res, 3(3), 1372.
Dimida, S., Barca, A., Cancelli, N., De Benedictis, V., Raucci, M. G., & Demitri, C. (2017). Effects of genipin concentration on cross-linked chitosan scaffolds for bone tissue engineering: Structural characterization and evidence of biocompatibility features. International Journal of Polymer Science.
Fan, Z., Qin, Y., Liu, S., Xing, R., Yu, H., Chen, X., Li, K., & Li, P. (2018). Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydrate polymers, 190, 1-11.
Filipović, U., Dahmane, R. G., Ghannouchi, S., Zore, A., & Bohinc, K. (2020). Bacterial adhesion on orthopedic implants. Advances in Colloid and Interface Science, 283, 102228.
Florea, D. A., Albuleț, D., Grumezescu, A. M., & Andronescu, E. (2020). Surface modification–A step forward to overcome the current challenges in orthopedic industry and to obtain an improved osseointegration and antimicrobial properties. Materials Chemistry and Physics, 243, 122579.
Geary, M. B., Macknet, D. M., Ransone, M. P., Odum, S. D., & Springer, B. D. (2020). Why Do Revision Total Knee Arthroplasties Fail? A Single-Center Review of 1632 Revision Total Knees Comparing Historic and Modern Cohorts. J Arthroplasty, 35(10), 2938-2943.
Grasso, P., Gaydon, J., & Hendy, R. (1973). The safety testing of medical plastics. II. An assessment of lysosomal changes as an index of toxicity in cell cultures. Food cosmetics toxicology, 11(2), 255-263.
He, M., Han, B., Jiang, Z., Yang, Y., Peng, Y., & Liu, W. (2017). Synthesis of a chitosan-based photo-sensitive hydrogel and its biocompatibility and biodegradability. Carbohydr Polym, 166, 228-235.
Huang, B., Liu, M., & Zhou, C. (2017). Chitosan composite hydrogels reinforced with natural clay nanotubes. Carbohydrate polymers, 175, 689-698.
Hunter, D. J., & Bierma-Zeinstra, S. (2019). Osteoarthritis. The Lancet, 393(10182), 1745-1759.
Ide, W., & Farrag, Y. (2020). Natural Polymeric Materials as a Vehicle for Antibiotics (Antibiotic Materials in Healthcare (pp. 51-64). Elsevier.
Iftime, M.-M., Morariu, S., & Marin, L. (2017). Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels. Carbohydrate polymers 165, 39-50.
Jarquín-Yáñez, K., García-Gutiérrez, P., Faustino-Vega, A., Castell-Rodríguez, A. E., Piñón-Zárate, G., Macín-Cabrera, S., Quirino-Barreda, C., & Miranda-Calderón, J. E. (2017). In vitro characterisation of optimised chitosan microparticles loaded with vancomycin by factorial experiment design. Revista mexicana de ciencias farmacéuticas, 48(4), 43-51.
Jeon, S. J., Ma, Z., Kang, M., Galvão, K. N., & Jeong, K. C. (2016). Application of chitosan microparticles for treatment of metritis and in vivo evaluation of broad spectrum antimicrobial activity in cow uteri. Biomaterials, 110, 71-80.
Jóźwiak, T., Filipkowska, U., Szymczyk, P., Rodziewicz, J., & Mielcarek, A. (2017). Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. Reactive Functional Polymers114, 58-74.
Kapadia, B. H., Elmallah, R. K., & Mont, M. A. (2016). A randomized, clinical trial of preadmission chlorhexidine skin preparation for lower extremity total joint arthroplasty. The Journal of arthroplasty, 31(12), 2856-2861.
Kim, E.-H., Han, G.-D., Kim, J.-W., Noh, S.-H., Lee, J.-G., Ito, Y., & Son, T.-I. (2017). Visible and UV-curable chitosan derivatives for immobilization of biomolecules. International journal of biological macromolecules, 104, 1611-1619.
Kumar, M., Kumar, R., & Kumar, S. (2021). Coatings on orthopedic implants to overcome present problems and challenges: A focused review. Materials Today: Proceedings, 45, 5269-5276.
Lai, J.-Y., Li, Y.-T., & Wang, T.-P. (2010). In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers. International journal of molecular sciences, 11(12), 5256-5272.
Laskar, K., Faisal, S. M., Rauf, A., Ahmed, A., & Owais, M. (2017). Undec-10-enoic acid functionalized chitosan based novel nano-conjugate: An enhanced anti-bacterial/biofilm and anti-cancer potential. Carbohydrate polymers 166, 14-23.
Li, B., Shan, C.-L., Zhou, Q., Fang, Y., Wang, Y.-L., Xu, F., Han, L.-R., Ibrahim, M., Guo, L.-B., & Xie, G.-L. (2013). Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Marine drugs, 11(5), 1534-1552.
Lin, X., Yang, S., Lai, K., Yang, H., Webster, T. J., & Yang, L. (2017). Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods. Nanomedicine, 13(1), 123-142.
Liu, S. J., Wen‐Neng Ueng, S., Lin, S. S., & Chan, E. C. (2002). In vivo release of vancomycin from biodegradable beads. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 63(6), 807-813.
Lombardi Jr, A., Berend, K., & Adams, J. (2014). Why knee replacements fail in 2013: patient, surgeon, or implant? The bone & joint journal, 96(11_Supple_A), 101-104.
Long, M. J., Papi, E., Duffell, L. D., & McGregor, A. H. (2017). Predicting knee osteoarthritis risk in injured populations. Clinical biomechanics, 47, 87-95.
López-Iglesias, C., Barros, J., Ardao, I., Monteiro, F. J., Alvarez-Lorenzo, C., Gómez-Amoza, J. L., & García-González, C. A. (2019). Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydrate polymers, 204, 223-231.
Luo, M., Peng, H., Deng, Z., Yin, Z., Zhao, Q., & Xiong, H. (2015). Preparation and characterization of genipin-crosslinked chitosan microspheres for the sustained release of salidroside. International Journal of Food Engineering, 11(3), 323-333.
Miranda, V. S., Vivielle, B., Machado, L. A., & Dias, J. M. D. (2012). Prevalence of chronic musculoskeletal disorders in elderly Brazilians: a systematic review of the literature. BMC musculoskeletal disorders, 13(1), 1-11.
Mishra, S. K., Ferreira, J., & Kannan, S. (2015). Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants. Carbohydrate polymers, 121, 37-48.
Mohamed, R. R., Elella, M. H. A., & Sabaa, M. W. (2017). Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly (acrylic acid). International journal of biological macromolecules 98, 302-313.
Moura, M. J., Brochado, J., Gil, M. H., & Figueiredo, M. M. (2017). In situ forming chitosan hydrogels: Preliminary evaluation of the in vivo inflammatory response. Materials Science Engineering: C 75, 279-285.
Mozalewska, W., Czechowska-Biskup, R., Olejnik, A. K., Wach, R. A., Ulański, P., & Rosiak, J. M. (2017). Chitosan-containing hydrogel wound dressings prepared by radiation technique. Radiation Physics Chemistry 134, 1-7.
Neufeld, L., & Bianco-Peled, H. (2017). Pectin–chitosan physical hydrogels as potential drug delivery vehicles. International journal of biological macromolecules, 101, 852-861.
Ordikhani, F., Tamjid, E., & Simchi, A. (2014). Characterization and antibacterial performance of electrodeposited chitosan–vancomycin composite coatings for prevention of implant-associated infections. Materials Science Engineering: C, 41, 240-248.
Osmani, R. A. M., Singh, E., Jadhav, K., Jadhav, S., & Banerjee, R. (2021). Biopolymers and biocomposites: Nature’s tools for wound healing and tissue engineering (Applications of Advanced Green Materials (pp. 573-630). Elsevier.
Park, C.-W., Li, X., Vogt, F. G., Hayes Jr, D., Zwischenberger, J. B., Park, E.-S., & Mansour, H. M. (2013). Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols. International journal of pharmaceutics, 455(1-2), 374-392.
Pawar, V., Bulbake, U., Khan, W., & Srivastava, R. (2019). Chitosan sponges as a sustained release carrier system for the prophylaxis of orthopedic implant-associated infections. International journal of biological macromolecules, 134, 100-112.
Perni, S., & Prokopovich, P. (2020). Nanostructured coatings for antimicrobial applications (Advances in Nanostructured Materials and Nanopatterning Technologies (pp. 115-140). Elsevier.
Primorac, D., Molnar, V., Rod, E., Jelec, Z., Cukelj, F., Matisic, V., Vrdoljak, T., Hudetz, D., Hajsok, H., & Boric, I. (2020). Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations. Genes (Basel), 11(8).
Qi, C., Rogachev, A., Tapal'skii, D., Yarmolenko, M., Rogachev, A., Jiang, X., Koshanskaya, E., & Vorontsov, A. (2017). Nanocomposite coatings for implants protection from microbial colonization: formation features, structure, and properties. Surface and Coatings Technology, 315, 350-358.
Rahman, Z., & Khan, M. A. (2013). Hunter screening design to understand the product variability of solid dispersion formulation of a peptide antibiotic. International journal of pharmaceutics, 456(2), 572-582.
Raphel, J., Holodniy, M., Goodman, S. B., & Heilshorn, S. C. (2016). Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials, 84, 301-314.
Rodríguez-Contreras, A., García, Y., Manero, J. M., & Rupérez, E. (2017). Antibacterial PHAs coating for titanium implants. European Polymer Journal, 90, 66-78.
Sáez, M., Vizcaíno, A., Alarcón, F., & Martínez, T. (2017). Comparison of lacZ reporter gene expression in gilthead sea bream (Sparus aurata) following oral or intramuscular administration of plasmid DNA in chitosan nanoparticles. Aquaculture474, 1-10.
Saidykhan, L., Bakar, M. Z. B. A., Rukayadi, Y., Kura, A. U., & Latifah, S. Y. (2016). Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. International journal of nanomedicine, 11, 661.
Saikia, C., Das, M. K., Ramteke, A., & Maji, T. K. (2016). Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles. International journal of biological macromolecules, 93, 1121-1132.
Saita, K., Nagaoka, S., Shirosaki, T., Horikawa, M., Matsuda, S., & Ihara, H. (2012). Preparation and characterization of dispersible chitosan particles with borate crosslinking and their antimicrobial and antifungal activity. Carbohydrate Research, 349, 52-58.
Sami, A. J., Khalid, M., Jamil, T., Aftab, S., Mangat, S. A., Shakoori, A., & Iqbal, S. (2018). Formulation of novel chitosan guargum based hydrogels for sustained drug release of paracetamol. International journal of biological macromolecules, 108, 324-332.
Sedghi, R., Shaabani, A., Mohammadi, Z., Samadi, F. Y., & Isaei, E. (2017). Biocompatible electrospinning chitosan nanofibers: a novel delivery system with superior local cancer therapy. Carbohydrate polymers 159, 1-10.
Solé, I., Vílchez, S., Miras, J., Montanyà, N., García-Celma, M. J., & Esquena, J. (2017). DHA and l -carnitine loaded chitosan hydrogels as delivery systems for topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 525, 85-92.
Standardization, I. O. f. (2009). ISO 10993-5: 2009-Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity. ISO Geneva.
Talebian, A., & Mansourian, A. (2017). Release of Vancomycin from electrospun gelatin/chitosan nanofibers. Materials Today: Proceedings, 4(7), 7065-7069.
Vasilieva, T., Sigarev, A., Kosyakov, D., Ul’yanovskii, N., Anikeenko, E., Chuhchin, D., Ladesov, A., Hein, A. M., & Miasnikov, V. (2017). Formation of low molecular weight oligomers from chitin and chitosan stimulated by plasma-assisted processes. Carbohydrate polymers
, 54-61.
Vivacqua, T., Moraes, R., Barretto, J., Cavanelas, N., Albuquerque, R., & Mozella, A. (2021). Functional Outcome of Patients Undergoing Knee Arthrodesis after Infected Total Arthroplasty. Revista Brasileira de Ortopedia, 56(3), 320-325.
Wahid, F., Wang, H.-S., Zhong, C., & Chu, L.-Q. (2017). Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydrate polymers 165, 455-461.
Wu, P., & Grainger, D. W. (2006). Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials, 27(11), 2450-2467.
Wu, S., Dong, H., Li, Q., Wang, G., & Cao, X. (2017). High strength, biocompatible hydrogels with designable shapes and special hollow-formed character using chitosan and gelatin. Carbohydrate polymers 168, 147-152.
Xu, Y., Han, J., & Lin, H. (2017). Fabrication and characterization of a self-crosslinking chitosan hydrogel under mild conditions without the use of strong bases. Carbohydrate polymers 156, 372-379.
Yang, Y., Yang, S.-B., Wang, Y.-G., Zhang, S.-H., Yu, Z.-F., & Tang, T.-T. (2017). Bacterial inhibition potential of quaternised chitosan-coated VICRYL absorbable suture: An in vitro and in vivo study. Journal of orthopaedic translation 8, 49-61.
Yao, Q., Nooeaid, P., Roether, J. A., Dong, Y., Zhang, Q., & Boccaccini, A. R. (2013). Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceramics International, 39(7), 7517-7522.
Yousaf, S. S., Houacine, C., Khan, I., Ahmed, W., & Jackson, M. J. (2020). Importance of biomaterials in biomedical engineering (Advances in Medical and Surgical Engineering (pp. 151-177). Elsevier.
Zeng, D.-M., Pan, J.-J., Wang, Q., Liu, X.-F., Wang, H., & Zhang, K.-Q. (2015). Controlling silk fibroin microspheres via molecular weight distribution. Materials Science and Engineering: C, 50, 226-233.
Zhang, Y., Meng, F.-C., Cui, Y.-L., & Song, Y.-F. (2011). Enhancing effect of hydroxypropyl-β-cyclodextrin on the intestinal absorption process of genipin. Journal of agricultural and food chemistry, 59(20), 10919-10926.
Zhao, Y., Zhang, X., Wang, Y., Wu, Z., An, J., Lu, Z., Mei, L., & Li, C. (2014). In situ cross-linked polysaccharide hydrogel as extracellular matrix mimics for antibiotics delivery. Carbohydrate polymers, 105, 63-69.
Zubareva, A., Shagdarova, B., Varlamov, V., Kashirina, E., & Svirshchevskaya, E. (2017). Penetration and toxicity of chitosan and its derivatives. European Polymer Journal, 93, 743-749.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Fábio Gondim Nepomuceno; Geceane Dias; Pascally Maria Aparecida Guerra de Araujo; Líbia de Souza Conrado Oliveira; Marcus Vinícius Lia Fook; Ana Cristina Figueiredo de Melo Costa
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.