Avaliação das propriedades físico-químicas e do desempenho das três gerações de biodiesel através do processo de transesterificação: uma revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v11i4.27234

Palavras-chave:

Geração; Biodiesel; Propriedades físico-químicas.

Resumo

Com a busca de fontes alternativas para a produção de biocombustíveis, surge o biodiesel como substituto favorito para reduzir o uso de combustíveis fósseis. A produção do biodiesel é tão diversificada que foi categorizada em três gerações. A primeira engloba culturas alimentícias e não comestíveis, a segunda geração são os biodieseis originados de resíduos orgânicos e substratos residuais alimentares e a terceira geração é composta por microrganismos, como fungos leveduras, entre outros. O presente trabalho tem como objetivo apresentar uma revisão de literatura referente às propriedades físico-químicas dos biodieseis das três gerações, produzidos pelo processo de transesterificação. Com as informações coletadas constatou-se que as matérias-primas de cada geração apresentam características e composições diferentes. De forma geral, o processo de transesterificação apresentou eficiência de acordo com as porcentagens de conversão e por adequar os óleos em biocombustíveis de acordo com as especificações. Entre as três gerações, os óleos vegetais apresentaram melhor desempenho, exceto pelo biodiesel de mamona. Analisando a possível substituição do diesel, as melhores biomassas foram Portulaca (erva daninha), chapéu napoleão e Pinhão manso, pelas características de apresentarem baixa massa específica, viscosidade adequada para a aplicação, maior número de cetano, alto ponto de fulgor, baixa temperatura para o ponto de nuvem e elevada conversão. Ainda se caracterizam por serem não comestíveis, evitando a competitividade com setor alimentício. Os biodieseis de terceira geração não obtiveram bons desempenhos e algumas pesquisas de óleos de gordura residuais se mostraram muito promissoras.

Referências

Abdelhady, H. H., Elazab, H. A., Ewais, E. M., Saber, M., & El-Deab, M. S. (2020). Efficient catalytic production of biodiesel using nano-sized sugar beet agro-industrial waste. Fuel, 261, 116481. https://doi.org/10.1016/j.fuel.2019.116481

Adewale, P., Dumont, M. J., & Ngadi, M. (2015). Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews, 45, 574-588. https://doi.org/10.1016/j.rser.2015.02.039.

Ahmad, S., Chaudhary, S., Pathak, V. V., Kothari, R., & Tyagi, V. V. (2020). Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano–CaO catalyst. Renewable Energy, 160, 86-97. https://doi.org/10.1016/j.renene.2020.06.010.

Ahmad, T., Danish, M., Kale, P., Geremew, B., Adeloju, S. B., Nizami, M., & Ayoub, M. (2019). Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renewable Energy, 139, 1272-1280. https://doi.org/10.1016/j.renene.2019.03.036.

Almasi, S., Najafi, G., Ghobadian, B., & Jalili, S. (2021). Biodiesel production from sour cherry kernel oil as novel feedstock using potassium hydroxide catalyst: Optimization using response surface methodology. Biocatalysis and Agricultural Biotechnology, 35, 102089. https://doi.org/10.1016/j.bcab.2021.102089.

Anwar, M., Rasul, M., & Ashwath, N. (2019). Optimization of biodiesel production from stone fruit kernel oil. Energy Procedia, 160, 268-276. https://doi.org/10.1016/j.egypro.2019.02.146.

Asl, M. A., Tahvildari, K., & Bigdeli, T. (2020). Eco-friendly synthesis of biodiesel from WCO by using electrolysis technique with graphite electrodes. Fuel, 270, 117582. https://doi.org/10.1016/j.bcab.2021.102089.

Atmanli, A., & Yilmaz, N. (2020). An experimental assessment on semi-low temperature combustion using waste oil biodiesel/C3-C5 alcohol blends in a diesel engine. Fuel, 260, 116357. https://doi.org/10.1016/j.fuel.2019.116357.

Azad, A. K., Rasul, M. G., Khan, M. M. K., Sharma, S. C., & Hazrat, M. A. (2015). Prospect of biofuels as an alternative transport fuel in Australia. Renewable and Sustainable Energy Reviews, 43, 331-351. https://doi.org/10.1016/j.rser.2014.11.047

Badawy, T., Mansour, M. S., Daabo, A. M., Aziz, M. M. A., Othman, A. A., Barsoum, F., ... & Fadhil, A. B. (2021). Selection of second-generation crop for biodiesel extraction and testing its impact with nano additives on diesel engine performance and emissions. Energy, 237, 121605. https://doi.org/10.1016/j.energy.2021.121605

Barua, P., Hossain, N., Chowdhury, T., & Chowdhury, H. (2020). Commercial diesel application scenario and potential of alternative biodiesel from waste chicken skin in Bangladesh. Environmental Technology & Innovation, 20, 101139. https://doi.org/10.1016/j.eti.2020.101139.

Bastos, R. K., Frigo, E. P., Dos Santos, R. F., & Gotardo, D. (2015). Biodiesel de Segunda Geração. Revista Brasileira de Energias Renováveis, 4(1).

Bemani, A., Xiong, Q., Baghban, A., Habibzadeh, S., Mohammadi, A. H., & Doranehgard, M. H. (2020). Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO-LSSVM models. Renewable Energy, 150, 924-934. https://doi.org/10.1016/j.renene.2019.12.086.

Bendi, A., Rao, G. D., Sharma, N., & Singh, M. P. (2021). CoFe2O4/Cu (OH) 2 Nanocomposite: Expeditious and magnetically recoverable heterogeneous catalyst for the four component Biginelli/transesterification reaction and their DFT studies. Results in Chemistry, 3, 100202. https://doi.org/10.1016/j.rechem.2021.100202

Bhuiya, M. M. K., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Azad, A. K. (2016). Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renewable and Sustainable Energy Reviews, 55, 1109-1128. https://doi.org/10.1016/j.rser.2015.04.163

Cavalcante, R., de Magalhães, S. P., Stein, R., Figueiredo, E., da Silva, S. M. C., & Pessoa, F. (2015). Estimação de parâmetros da equação peng-robinson para o biodiesel através de valores de massa específica em função da temperatura. Blucher Chemical Engineering Proceedings, 1(3), 714-719.

Cavalcanti, M. G. D. S., & Cavalcanti, L. A. P. (2019). Uso de materiais lignocelulósicos na redução do índice de acidez do óleo residual para produção de biodiesel. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 6(14), 767-772. https://doi.org/10.21438/rbgas.061410

Carmona-Cabello, M., Leiva-Candia, D., Castro-Cantarero, J. L., Pinzi, S., & Dorado, M. P. (2018). Valorization of food waste from restaurants by transesterification of the lipid fraction. Fuel, 215, 492-498. https://doi.org/10.1016/j.fuel.2017.11.096

Carvalho, A. K. F., Bento, H. B., Rivaldi, J. D., & de Castro, H. F. (2018). Direct transesterification of Mucor circinelloides biomass for biodiesel production: effect of carbon sources on the accumulation of fungal lipids and biofuel properties. Fuel, 234, 789-796. https://doi.org/10.1016/j.fuel.2018.07.029

Chen, G. Q., Johnson, K., Morales, E., Mackey, B., & Lin, J. T. (2016). Rapid development of a castor cultivar with increased oil content. Industrial Crops and Products, 94, 586-588. https://doi.org/10.1016/j.indcrop.2016.09.020

Chia, S. R., Ong, H. C., Chew, K. W., Show, P. L., Phang, S. M., Ling, T. C., ... & Chang, J. . S. (2018). Sustainable approaches for algae utilisation in bioenergy production. Renewable energy, 129, 838-852. https://doi.org/10.1016/j.renene.2017.04.001.

Constantino, AF, Cubides-Román, DC, dos Santos, RB, Queiroz Jr, LH, Colnago, LA, Neto, Á. C., ... & Lacerda Jr, V. (2019). Determinação das propriedades físico-químicas de biodiesel e blendas utilizando RMN de baixo campo e calibração multivariada. Combustível, 237, 745-752. https://doi.org/10.1016/j.fuel.2018.10.045.

Coradi, PC, Dubal, Í. TP, Bilhalva, NDS, Fontoura, CN, & Teodoro, PE (2020). Correlação por meio de análise multivariada e controle das condições de secagem e armazenamento de grãos de girassol sobre a qualidade do óleo vegetal extraído. Journal of Food Processing and Preservation, 44 (12), e14961. https://doi.org/10.1111/jfpp.14961.

Costa, M. J., Silva, M. R., Ferreira, E. E., Carvalho, A. K. F., Basso, R. C., Pereira, E. B., ... & Hirata, D. B. (2020). Enzymatic biodiesel production by hydroesterification using waste cooking oil as feedstock. Chemical Engineering and Processing-Process Intensification, 157, 108131. https://doi.org/10.1016/j.cep.2020.108131

Dai, Y. M., Li, Y. Y., Chen, B. Y., & Chen, C. C. (2021). One-pot synthesis of acid-base bifunctional catalysts for biodiesel production. Journal of Environmental Management, 299, 113592. https://doi.org/10.1016/j.jenvman.2021.113592

Dantas, J., Leal, E., Mapossa, A. B., Silva, A. S. A., & Costa, A. C. F. D. M. (2016). Síntese, caracterização e performance catalítica de nanoferritas mistas submetidas a reação de transesterificação e esterificação via rota metílica e etílica para biodiesel. Matéria (Rio de Janeiro), 21, 1080-1093. https://doi.org/10.1590/S1517-707620160004.0099.

Dehghan, L., Golmakani, M. T., & Hosseini, S. M. H. (2019). Optimization of microwave-assisted accelerated transesterification of inedible olive oil for biodiesel production. Renewable Energy, 138, 915-922. https://doi.org/10.1016/j.renene.2019.02.017

Du, L., Li, Z., Ding, S., Chen, C., Qu, S., Yi, W., ... & Ding, J. (2019). Synthesis and characterization of carbon-based MgO catalysts for biodiesel production from castor oil. Fuel, 258, 116122. https://doi.org/10.1016/j.fuel.2019.116122

Dugala, N. S., Goindi, G. S., & Sharma, A. (2021). Evaluation of physicochemical characteristics of Mahua (Madhuca indica) and Jatropha (Jatropha curcas) dual biodiesel blends with diesel. Journal of King Saud University-Engineering Sciences, 33(6), 424-436. https://doi.org/10.1016/j.jksues.2020.05.006

Elfasakhany, A. (2020). Gasoline engine fueled with bioethanol-bio-acetone-gasoline blends: Performance and emissions exploration. Fuel, 274, 117825. https://doi.org/10.1016/j.fuel.2020.117825.

Eliasz, J., Osipowicz, T., Abramek, K. F., & Mozga, Ł. (2019). Model issues regarding modification of fuel injector components to improve the injection parameters of a modern compression ignition engine powered by biofuel. Applied Sciences, 9(24), 5479. https://doi.org/10.3390/app9245479.

Ezekoye, V., Adinde, R., Ezekoye, D., & Ofomatah, A. (2019). Syntheses and characterization of biodiesel from citrus sinensis seed oil. Scientific African, 6, e00217. https://doi.org/10.1016/j.sciaf.2019.e00217

Folayan, A. J., Anawe, P. A. L., Aladejare, A. E., & Ayeni, A. O. (2019). Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Reports, 5, 793-806. https://doi.org/10.1016/j.egyr.2019.06.013.

Fonseca, J. M., Teleken, J. G., de Cinque Almeida, V., & da Silva, C. (2019). Biodiesel from waste frying oils: Methods of production and purification. Energy Conversion and Management, 184, 205-218. https://doi.org/10.1016/j.enconman.2019.01.061

Gad, M. S., EL-Seesy, A. I., Hashish, H. M. A., He, Z., & Alshaer, W. G. (2021). Combustion and emissions aspects of a diesel engine working with sheep fat oil biodiesel-diesel blends. Case Studies in Thermal Engineering, 26, 101162. https://doi.org/10.1016/j.csite.2021.101162

Galvão, M. C. B., & Ricarte, I. L. M. (2019). Revisão sistemática da literatura: conceituação, produção e publicação. Logeion: Filosofia da informação, 6(1), 57-73. https://doi.org/10.21728/logeion.2019v6n1.p57-73

García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2017). Biomass sources for thermal conversion. Techno-economical overview. Fuel, 195, 182-189. https://doi.org/10.1016/j.fuel.2017.01.063

Gebremariam, S. N., & Marchetti, J. M. (2017). Biodiesel production technologies. Aims Energy, 5(3), 425-457. https://doi.org/10.3934/energy.2017.3.425

Ghasemi, A., & Moosavi-Nasab, M. (2020). Production of second-generation biodiesel using low-quality date fruits. Biotechnology Reports, 27, e00480. https://doi.org/10.1016/j.btre.2020.e00480

Gupta, A. R., Jalan, A. P., & Rathod, V. K. (2018). Solar energy as a process intensification tool for the biodiesel production from hempseed oil. Energy Conversion and Management, 171, 126-132. https://doi.org/10.1016/j.enconman.2018.05.050

Gupta, A. R., & Rathod, V. K. (2018). Waste cooking oil and waste chicken eggshells derived solid base catalyst for the biodiesel production: Optimization and kinetics. Waste management, 79, 169-178. https://doi.org/10.1016/j.wasman.2018.07.022

Hajjari, M., Tabatabaei, M., Aghbashlo, M., & Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72, 445-464. https://doi.org/10.1016/j.rser.2017.01.034

Hariprasath, P., Vijayakumar, V., Selvamani, S. T., Vigneshwar, M., & Palanikumar, K. (2019). Some studies on waste animal tallow biodiesel produced by modified transesterification method using heterogeneous catalyst. Materials Today: Proceedings, 16, 1271-1278. https://doi.org/10.1016/j.matpr.2019.05.224

Hoseini, S. S., Najafi, G., & Sadeghi, A. J. I. C. (2019). Chemical characterization of oil and biodiesel from Common Purslane (Portulaca) seed as novel weed plant feedstock. Industrial Crops and Products, 140, 111582. https://doi.org/10.1016/j.indcrop.2019.111582

Hossain, N., Zaini, J., Mahlia, T. M. I., & Azad, A. K. (2019). Elemental, morphological and thermal analysis of mixed microalgae species from drain water. Renewable Energy, 131, 617-624. https://doi.org/10.1016/j.renene.2018.07.082.

Ismail, T. M., Lu, D., Ramzy, K., Abd El-Salam, M., Yu, G., & Elkady, M. A. (2019). Experimental and theoretical investigation on the performance of a biodiesel-powered engine from plant seeds in Egypt. Energy, 189, 116197. https://doi.org/10.1016/j.energy.2019.116197

Jamil, F., Myint, M. T. Z., Al-Hinai, M., Al-Haj, L., Baawain, M., Al-Abri, M., ... & Atabani, A. E. (2018). Biodiesel production by valorizing waste Phoenix dactylifera L. Kernel oil in the presence of synthesized heterogeneous metallic oxide catalyst (Mn@ MgO-ZrO2). Energy Conversion and Management, 155, 128-137. https://doi.org/10.1016/j.enconman.2017.10.064.

Jayakumar, S., Yusoff, M. M., Rahim, M. H. A., Maniam, G. P., & Govindan, N. (2017). The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renewable and Sustainable Energy Reviews, 72, 33-47. https://doi.org/10.1016/j.rser.2017.01.002.

De Jesus, S. S., Ferreira, G. F., Maciel, M. R. W., & Maciel Filho, R. (2019). Biodiesel purification by column chromatography and liquid-liquid extraction using green solvents. Fuel, 235, 1123-1130. https://doi.org/10.1016/j.fuel.2018.08.107

Kalu-Uka, G. M., Kumar, S., Kalu-Uka, A. C., Vikram, S., Okorafor, O. O., Kigozi, M., ... & Onwualu, A. P. (2021). Prospects for biodiesel production from Macrotermes nigeriensis: Process optimization and characterization of biodiesel properties. Biomass and Bioenergy, 146, 105980. https://doi.org/10.1016/j.biombioe.2021.105980

Kanakdande, A. P., Khobragade, C. N., & Mane, R. S. (2021). Ultraviolet induced random mutagenesis in Bacillus amyloliquefaciens (MF 510169) for improving biodiesel production. Fuel, 304, 121380. https://doi.org/10.1016/j.fuel.2021.121380

Karthikeyan, S., Prathima, A., Periyasamy, M., & Mahendran, G. (2020). Emission analysis of the diesel engine using Stoechospermum marginatum, brown marine algae with Al2O3 nano fluid. Materials Today: Proceedings, 33, 4047-4053. https://doi.org/10.1016/j.matpr.2020.06.480

Kasirajan, R. (2021). Biodiesel production by two step process from an energy source of Chrysophyllum albidum oil using homogeneous catalyst. South African Journal of Chemical Engineering, 37, 161-166. https://doi.org/10.1016/j.sajce.2021.05.011

Keera, S. T., El Sabagh, S. M., & Taman, A. R. (2018). Castor oil biodiesel production and optimization. Egyptian journal of petroleum, 27(4), 979-984. https://doi.org/10.1016/j.ejpe.2018.02.007.

Kirubakaran, M., & Selvan, V. A. M. (2021). Experimental investigation on the effects of micro eggshell and nano-eggshell catalysts on biodiesel optimization from waste chicken fat. Bioresource Technology Reports, 14, 100658. https://doi.org/10.1016/j.biteb.2021.100658

Konwar, L. J., Wärnå, J., Mäki-Arvela, P., Kumar, N., & Mikkola, J. P. (2016). Reaction kinetics with catalyst deactivation in simultaneous esterification and transesterification of acid oils to biodiesel (FAME) over a mesoporous sulphonated carbon catalyst. Fuel, 166, 1-11. https://doi.org/10.1016/j.fuel.2015.10.102

Kumar, D., Kumar, A., Singla, A., & Dewan, R. (2021). Production and tribological characterization of castor based biodiesel. Materials Today: Proceedings, 46, 10942-10949. https://doi.org/10.1016/j.matpr.2021.02.009

Kumar, R. S., & Purayil, S. T. P. (2019). Optimization of ethyl ester production from arachis hypogaea oil. Energy Reports, 5, 658-665. https://doi.org/10.1016/j.egyr.2019.06.001

Kumar, S. A., Sakthinathan, G., Vignesh, R., Banu, J. R., & Ala'a, H. (2019). Optimized transesterification reaction for efficient biodiesel production using Indian oil sardine fish as feedstock. Fuel, 253, 921-929.

Li, R., & Wang, Z. (2018). Study on status characteristics and oxidation reactivity of biodiesel particulate matter. Fuel, 218, 218-226. https://doi.org/10.1016/j.fuel.2018.01.041.

Liu, L., Li, J., & Xie, J. (2017). The role of biomass in deeply decarbonizing China's power generation: implications for policy design and implementation. Carbon Management, 8(2), 191-205. https://doi.org/10.1080/17583004.2017.1309203

López-Fernández, J., Benaiges, M. D., & Valero, F. (2021). Second-and third-generation biodiesel production with immobilised recombinant Rhizopus oryzae lipase: Influence of the support, substrate acidity and bioprocess scale-up. Bioresource Technology, 334, 125233. https://doi.org/10.1016/j.biortech.2021.125233

Loures, C. C., Amaral, M. S., Da Rós, P. C., Zorn, S. M., de Castro, H. F., & Silva, M. B. (2018). Simultaneous esterification and transesterification of microbial oil from Chlorella minutissima by acid catalysis route: A comparison between homogeneous and heterogeneous catalysts. Fuel, 211, 261-268. https://doi.org/10.1016/j.fuel.2017.09.073

Malekghasemi, S., Kariminia, H. R., Plechkova, N. K., & Ward, V. C. (2021). Direct transesterification of wet microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts. Biomass and Bioenergy, 150, 106126. https://doi.org/10.1016/j.biombioe.2021.106126

Mardhiah, H. H., Ong, H. C., Masjuki, H. H., Lim, S., & Lee, H. V. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and sustainable energy reviews, 67, 1225-1236. https://doi.org/10.1016/j.rser.2016.09.036.

Martins, G. I., Secco, D., Rosa, H. A., Bariccatti, R. A., Dolci, B. D., de Souza, S. N. M., ... & Gurgacz, F. (2015). Physical and chemical properties of fish oil biodiesel produced in Brazil. Renewable and Sustainable Energy Reviews, 42, 154-157. https://doi.org/10.1016/j.rser.2014.10.024.

Mathew, G. M., Raina, D., Narisetty, V., Kumar, V., Saran, S., Pugazhendi, A., ... & Binod, P. (2021). Recent advances in biodiesel production: challenges and solutions. Science of The Total Environment, 794, 148751. https://doi.org/10.1016/j.scitotenv.2021.148751

McNutt, J., & Yang, J. (2017). Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renewable and Sustainable Energy Reviews, 71, 63-76. https://doi.org/10.1016/j.rser.2016.12.110.

Menegazzo, M. L., & Fonseca, G. G. (2019). Biomass recovery and lipid extraction processes for microalgae biofuels production: A review. Renewable and Sustainable Energy Reviews, 107, 87-107. https://doi.org/10.1016/j.rser.2019.01.064

Mohiddin, M. N. B., Tan, Y. H., Seow, Y. X., Kansedo, J., Mubarak, N. M., Abdullah, M. O., ... & Khalid, M. (2021). Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 98, 60-81. https://doi.org/10.1016/j.jiec.2021.03.036

Naureen, R., Tariq, M., Yusoff, I., Chowdhury, A. J. K., & Ashraf, M. A. (2015). Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis. Saudi journal of biological sciences, 22(3), 332-339. https://doi.org/10.1016/j.sjbs.2014.11.017.

Nazir, M. H., Ayoub, M., Zahid, I., Shamsuddin, R. B., Yusup, S., Ameen, M., & Qadeer, M. U. (2021). Development of lignin based heterogeneous solid acid catalyst derived from sugarcane bagasse for microwave assisted-transesterification of waste cooking oil. Biomass and Bioenergy, 146, 105978. https://doi.org/10.1016/j.biombioe.2021.105978

Ning, Y., Niu, S., Wang, Y., Zhao, J., & Lu, C. (2021). Sono-modified halloysite nanotube with NaAlO2 as novel heterogeneous catalyst for biodiesel production: Optimization via GA_BP neural network. Renewable Energy, 175, 391-404. https://doi.org/10.1016/j.renene.2021.04.135

Nogales-Delgado, S., Encinar, J. M., & Cortés, Á. G. (2021). High oleic safflower oil as a feedstock for stable biodiesel and biolubricant production. Industrial Crops and Products, 170, 113701. https://doi.org/10.1016/j.indcrop.2021.113701

Olubunmi, B. E., Karmakar, B., Aderemi, O. M., Auta, M., & Halder, G. (2020). Parametric optimization by Taguchi L9 approach towards biodiesel production from restaurant waste oil using Fe-supported anthill catalyst. Journal of Environmental Chemical Engineering, 8(5), 104288. https://doi.org/10.1016/j.jece.2020.104288

Osorio-González, C. S., Gómez-Falcon, N., Sandoval-Salas, F., Saini, R., Brar, S. K., & Ramírez, A. A. (2020). Production of biodiesel from castor oil: A review. Energies, 13(10), 2467. https://doi.org/10.3390/en13102467.

Paul, A. K., Borugadda, V. B., Reshad, A. S., Bhalerao, M. S., Tiwari, P., & Goud, V. V. (2021). Comparative Study of physicochemical and rheological property of waste cooking oil, castor oil, rubber seed oil, their methyl esters and blends with mineral diesel fuel. Materials Science for Energy Technologies, 4, 148-155. https://doi.org/10.1016/j.mset.2021.03.004

Prieto, N. M., Ferreira, A. G., Portugal, A. T., Moreira, R. J., & Santos, J. B. (2015). Correlation and prediction of biodiesel density for extended ranges of temperature and pressure. Fuel, 141, 23-38. https://doi.org/10.1016/j.fuel.2014.09.113.

Qadeer, M. U., Ayoub, M., Komiyama, M., Daulatzai, M. U. K., Mukhtar, A., Saqib, S., ... & Bokhari, A. (2021). Review of biodiesel synthesis technologies, current trends, yield influencing factors and economic analysis of supercritical process. Journal of Cleaner Production, 309, 127388. https://doi.org/10.1016/j.jclepro.2021.127388.

Quintana-Gómez, L., Ladero, M., & Calvo, L. (2021). Enzymatic production of biodiesel from alperujo oil in supercritical CO2. The Journal of Supercritical Fluids, 171, 105184. https://doi.org/10.1016/j.supflu.2021.105184.

Rahman, W. U., Yahya, S. M., Khan, Z. A., Khan, N. A., Halder, G., & Dhawane, S. H. (2021). Valorization of waste chicken egg shells towards synthesis of heterogeneous catalyst for biodiesel production: Optimization and statistical analysis. Environmental Technology & Innovation, 22, 101460. https://doi.org/10.1016/j.eti.2021.101460

Ranucci, C. R., Alves, H. J., Monteiro, M. R., Kugelmeier, C. L., Bariccatti, R. A., de Oliveira, C. R., & da Silva, E. A. (2018). Potential alternative aviation fuel from jatropha (Jatropha curcas L.), babassu (Orbignya phalerata) and palm kernel (Elaeis guineensis) as blends with Jet-A1 kerosene. Journal of Cleaner Production, 185, 860-869. https://doi.org/10.1016/j.jclepro.2018.03.084.

Reis, C. E. R., Valle, G. F., Bento, H. B., Carvalho, A. K., Alves, T. M., & de Castro, H. F. (2020). Sugarcane by-products within the biodiesel production chain: Vinasse and molasses as feedstock for oleaginous fungi and conversion to ethyl esters. Fuel, 277, 118064. https://doi.org/10.5935/0100-4042.20150163

Reis, M. C., Freitas, F. A., Lachter, E. R., San Gil, R. A., Nascimento, R. S., Poubel, R. L., & Borré, L. B. (2015). Produção de biodiesel a partir de ácidos graxos provenientes do refino de óleos vegetais via catálise ácida heterogênea e micro-ondas. Química Nova, 38, 1307-1312. https://doi.org/10.5935/0100-4042.20150163

Rezende, G. B., Fernandes, D. M., Ferreira, D. C., & Gonçalves, J. C. D. S. I. (2021). Venturi: dispositivo de cavitação hidrodinâmica para acelerar a síntese de biodiesel. Engenharia Sanitaria e Ambiental, 26, 105-112. https://doi.org/10.1590/S1413-415220190177.

Rovere, B. O., Rodrigues, J. H., & Teleken, J. G. (2020). Redução do índice de acidez através da neutralização e esterificação para produção de biodiesel. Brazilian Journal of Development, 6(5), 24678-24686. https://doi.org/10.34117/bjdv6n5-064.

Ryskamp, R., Thompson, G., Carder, D., & Nuszkowski, J. (2017). The influence of high reactivity fuel properties on reactivity controlled compression ignition combustion (No. 2017-24-0080). SAE Technical Paper. https://doi.org/10.4271/2017-24-0080.

Sánchez-Arreola, E., Bach, H., & Hernández, L. R. (2019). Biodiesel production from Cascabela ovata seed oil. Bioresource Technology Reports, 7, 100220. https://doi.org/10.1016/j.biteb.2019.100220

Dos Santos, R. C. M., Gurgel, P. C., Pereira, N. S., Breves, R. A., de Matos, P. R. R., Silva, L. P., ... & Lopes, R. D. V. V. (2020). Ethyl esters obtained from pequi and macaúba oils by transesterification with homogeneous acid catalysis. Fuel, 259, 116206. https://doi.org/10.1016/j.fuel.2019.116206

Saengsawang, B., Bhuyar, P., Manmai, N., Ponnusamy, V. K., Ramaraj, R., & Unpaprom, Y. (2020). The optimization of oil extraction from macroalgae, Rhizoclonium sp. by chemical methods for efficient conversion into biodiesel. Fuel, 274, 117841. https://doi.org/10.1016/j.fuel.2020.117841.

Samuel, O. D., Giwa, S. O., & El-Suleiman, A. (2016). Optimization of coconut oil ethyl esters reaction variables and prediction model of its blends with diesel fuel for density and kinematic viscosity. Biofuels, 7(6), 723-733. https://doi.org/10.1080/17597269.2016.1192445.

Saydut, A., Erdogan, S., Kafadar, A. B., Kaya, C., Aydin, F., & Hamamci, C. (2016). Process optimization for production of biodiesel from hazelnut oil, sunflower oil and their hybrid feedstock. Fuel, 183, 512-517. https://doi.org/10.1016/j.fuel.2016.06.114.

Sharma, A., Kodgire, P., & Kachhwaha, S. S. (2020). Investigation of ultrasound-assisted KOH and CaO catalyzed transesterification for biodiesel production from waste cotton-seed cooking oil: Process optimization and conversion rate evaluation. Journal of Cleaner Production, 259, 120982. https://doi.org/10.1016/j.jclepro.2020.120982

Shobana, R., Vijayalakshmi, S., Deepanraj, B., & Ranjitha, J. (2021). Biodiesel production from Capparis spinosa L seed oil using calcium oxide as a heterogeneous catalyst derived from oyster shell. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.07.215.

Silva, A. A. L., Dias Santos, A. G., Di Souza, L., da Silva Caldeira, V. P., Luz Júnior, G. E., & Araújo, A. S. (2015). Síntese e Caracterização de Biodiesel de Sebo Bovino e de sua Mistura B10. Orbital: The Electronic Journal of Chemistry, 7(1), 21-27. http://dx.doi.org/10.17807/orbital.v7i1.680.

da Silva Castro, L., & Barañano, A. G. (2019). Produção de biodiesel, métodos, perspectivas para o Brasil–uma revisão. Revista Liberato, 20(33), 41-56. https://doi.org./10.31514/rliberato.2019v20n33.p41

da Silva Filho, S. C., Miranda, A. C., Silva, T. A. F., Calarge, F. A., de Souza, R. R., Santana, J. C. C., & Tambourgi, E. B. (2018). Environmental and techno-economic considerations on biodiesel production from waste frying oil in São Paulo city. Journal of cleaner production, 183, 1034-1042. https://doi.org/10.1016/j.jclepro.2018.02.199

da Silva Oliveira, D. C., Sousa, G. C. M., & Cavalcanti, L. A. P. (2021). Estudo da melhoria de propriedades de escoamento a frio e estabilidade oxidativa do biodiesel a partir da mistura de óleo vegetal e gordura animal. Brazilian Journal of Development, 7(6), 63226-63240. https://doi.org/ 10.34117/bjdv7n6-616

Singh, D., Sharma, D., Soni, S. L., Inda, C. S., Sharma, S., Sharma, P. K., & Jhalani, A. (2021). A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. Journal of Cleaner Production, 307, 127299. https://doi.org/10.1016/j.jclepro.2021.127299.

Singh, D., Sharma, D., Soni, S. L., Sharma, S., & Kumari, D. (2019). Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel, 253, 60-71. https://doi.org/10.1016/j.fuel.2019.04.174.

Siow, H. S., Sudesh, K., Murugan, P., & Ganesan, S. (2021). Mealworm (Tenebrio molitor) oil characterization and optimization of the free fatty acid pretreatment via acid-catalyzed esterification. Fuel, 299, 120905. https://doi.org/10.1016/j.fuel.2021.120905

Soto, F., Alves, M., Valdés, J. C., Armas, O., Crnkovic, P., Rodrigues, G., ... & Melo, L. (2018). The determination of the activation energy of diesel and biodiesel fuels and the analysis of engine performance and soot emissions. Fuel Processing Technology, 174, 69-77. https://doi.org/10.1016/j.fuproc.2018.02.008.

Souza, G. K., Scheufele, F. B., Pasa, T. L. B., Arroyo, P. A., & Pereira, N. C. (2016). Synthesis of ethyl esters from crude macauba oil (Acrocomia aculeata) for biodiesel production. Fuel, 165, 360-366. https://doi.org/10.1016/j.fuel.2015.10.068

Tayari, S., Abedi, R., & Rahi, A. (2020). Comparative assessment of engine performance and emissions fueled with three different biodiesel generations. Renewable Energy, 147, 1058-1069. https://doi.org/10.1016/j.renene.2019.09.068

Ulberth-Buchgraber, M., Morales, V., Ruano Miguel, L., Charoud-Got, J., & Held, A. (2015). New certified rapeseed-based biodiesel reference material for effective biodiesel testing. Energy & Fuels, 29(6), 3732-3738. https://doi.org/10.1021/acs.energyfuels.5b00476.

Vargas-Ibáñez, LT, Cano-Gómez, JJ, Zwolinski, P., & Evrard, D. (2020). Avaliação ambiental de um biodiesel à base de gordura animal: Definindo objetivo, escopo e inventário de ciclo de vida. Procedia CIRP, 90, 215-219. https://doi.org/10.1016/j.procir.2020.02.053

Veinblat, M., Baibikov, V., Katoshevski, D., Wiesman, Z., & Tartakovsky, L. (2018). Impact of various blends of linseed oil-derived biodiesel on combustion and particle emissions of a compression ignition engine–A comparison with diesel and soybean fuels. Energy conversion and management, 178, 178-189. https://doi.org/10.1016/j.enconman.2018.10.028.

Vieira, J. S. C., Sousa, T. L., Rosas, L. S., Lima, A. L., Ronconi, C. M., & Mota, C. J. (2018). Esterificação e transesterificação homogênea de óleos vegetais contendo alto teor de ácidos graxos livres. Química Nova, 41, 10-16. https://doi.org/10.21577/0100-4042.20170148.

Verma, P., Sharma, M. P., & Dwivedi, G. (2016). Evaluation and enhancement of cold flow properties of palm oil and its biodiesel. Energy Reports, 2, 8-13. https://doi.org/10.1016/j.egyr.2015.12.001.

Vinayagam, N. K., Hoang, A. T., Solomon, J. M., Subramaniam, M., Balasubramanian, D., EL-Seesy, A. I., & Nguyen, X. P. (2021). Smart control strategy for effective hydrocarbon and carbon monoxide emission reduction on a conventional diesel engine using the pooled impact of pre-and post-combustion techniques. Journal of Cleaner Production, 306, 127310. https://doi.org/10.1016/j.jclepro.2021.127310

Voloshin, R. A., Rodionova, M. V., Zharmukhamedov, S. K., Veziroglu, T. N., & Allakhverdiev, S. I. (2016). Biofuel production from plant and algal biomass. International journal of hydrogen energy, 41(39), 17257-17273. https://doi.org/10.1016/j.ijhydene.2016.07.084

Wang, H., Peng, X., Zhang, H., Yang, S., & Li, H. (2021). Microorganisms-promoted biodiesel production from biomass: A review. Energy Conversion and Management: X, 12, 100137. https://doi.org/10.1016/j.ecmx.2021.100137.

Yang, Y., Tian, Z., Lan, Y., Wang, S., & Chen, H. (2021). An overview of biofuel power generation on policies and finance environment, applied biofuels, device and performance. Journal of Traffic and Transportation Engineering (English Edition), 8(4), 534-553. https://doi.org/10.1016/j.jtte.2021.07.002

Yatish, K. V., Lalithamba, H. S., Suresh, R., & Omkaresh, B. R. (2018). Synthesis of biodiesel from Garcinia gummi-gutta, Terminalia belerica and Aegle marmelos seed oil and investigation of fuel properties. Biofuels, 9(1), 121-128. https://doi.org/10.1080/17597269.2016.1259524

Yusuff, A. S., Bhonsle, A. K., Bangwal, D. P., & Atray, N. (2021). Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment. Renewable Energy, 177, 1253-1264. https://doi.org/10.1016/j.renene.2021.06.039

Yusoff, M. H. M., Ayoub, M., Nazir, M. H., Sher, F., Zahid, I., & Ameen, M. (2021). Solvent extraction and performance analysis of residual palm oil for biodiesel production: Experimental and simulation study. Journal of Environmental Chemical Engineering, 9(4), 105519. https://doi.org/10.1080/17597269.2016.1259524

Zininga, J. T., Puri, A. K., Govender, A., Singh, S., & Permaul, K. (2019). Concomitant production of chitosan and lipids from a newly isolated Mucor circinelloides ZSKP for biodiesel production. Bioresource technology, 272, 545-551. https://doi.org/10.1016/j.biortech.2018.10.035

Downloads

Publicado

17/03/2022

Como Citar

CRUZ, D. C. P. .; CASTRO, I. F. G. .; SEHWARTZ, R. L. da C. .; CAMPOS, A. L. de B. S. .; PEREIRA, I. C. C. .; VILHENA, A. E. G. de .; MARTELLI, M. C. . Avaliação das propriedades físico-químicas e do desempenho das três gerações de biodiesel através do processo de transesterificação: uma revisão. Research, Society and Development, [S. l.], v. 11, n. 4, p. e23111427234, 2022. DOI: 10.33448/rsd-v11i4.27234. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27234. Acesso em: 15 jan. 2025.

Edição

Seção

Engenharias