Uma ferramenta baseada em aprendizado profundo para o suporte à decisão de diagnóstico de distúrbios vestibulares periféricos
DOI:
https://doi.org/10.33448/rsd-v11i4.27753Palavras-chave:
Nistagmo; Videonistagmografia; Vestibulopatia periférica; Diagnóstico; Inteligência Artificial; Visão Computacional; Aprendizado profundo.Resumo
O nistagmo é o movimento involuntário dos olhos, caracterizado pelo movimento suave, chamado de fase lenta do nistagmo, interrompido pela fixação rápida na direção contrária. Ele é um dos fatores preponderantes no diagnóstico de desordens vestibulares. Este estudo apresenta o Smart Nystagmography, uma proposta de ferramenta baseada em visão computacional para o suporte ao diagnóstico de disfunções vestibulares periféricas, que engloba todo o processo, desde o dispositivo para coleta do movimento ocular até o classificador do distúrbio. A solução proposta é baseada em vetores de características que apresentam padrões de movimento ocular, os quais são identificados com o uso de aprendizado de máquina, em particular, Aprendizado Profundo (AP). A técnica de videonistagmografia e suas diferentes provas foram realizadas pelos indivíduos a fim de gerar um conjunto de dados representativo para indivíduos tanto saudáveis quanto com disfunção vestibular. Os métodos de pré-processamento de dados, assim como uma técnica de otimização de hiperparâmetros dos algoritmos de AP foram empregados com o propósito de melhorar o desempenho dos modelos do estado da arte. Os resultados de desempenho para a identificação da presença de disfunção vestibular periférica chegaram a uma acurácia de 96,7% para o melhor modelo, depois de passar pelo processo de otimização. Os resultados mostram a eficiência do Smart Nystagmography, o qual possui uma solução que envolve desde o dispositivo de coleta de vídeos até o sistema com as técnicas de preparação dos dados e o modelo de AP implantado. Estudos clínicos adicionais são necessários para validar a solução.
Referências
Alpaydin, E. (2020). Introduction to machine learning. MIT press.
Chollet, F. (2015). Keras documentation. keras. io, 33.
Eggers, S. D. (2019). Approach to the Examination and Classification of Nystagmus. Journal of Neurologic Physical Therapy, 43, S20-S26.
Felipe, L., Staggs, A., & Hunnicutt, S. (2021). Can Type of Dizziness Influence the Vestibular Caloric Test Result?. Journal of Primary Care & Community Health, 12, 21501327211030120.
Ganança, M. M., Caovilla, H. H., & Ganança, F. F. (2010). Electronystagmography versus videonystagmography. Brazilian Journal of Otorhinolaryngology, 76(3), 399-403.
Mantokoudis, G., Otero-Millan, J., & Gold, D. R. (2022). Current concepts in acute vestibular syndrome and video-oculography. Current opinion in neurology, 35(1), 75-83.
Groezinger, M., Huppert, D., Strobl, R., & Grill, E. (2020). Development and validation of a classification algorithm to diagnose and differentiate spontaneous episodic vertigo syndromes: results from the DizzyReg patient registry. Journal of neurology, 267(1), 160-167.
Hasibi, R., Shokri, M., & Dehghan, M. (2019). Augmentation scheme for dealing with imbalanced network traffic classification using deep learning. arXiv preprint arXiv:1901.00204.
Iwana, B. K., & Uchida, S. (2021). An empirical survey of data augmentation for time series classification with neural networks. Plos one, 16(7), e0254841.
Kamogashira, T., Fujimoto, C., Kinoshita, M., Kikkawa, Y., Yamasoba, T., & Iwasaki, S. (2020). Prediction of vestibular dysfunction by applying machine learning algorithms to postural instability. Frontiers in neurology, 11, 7.
Karatas, M. (2008). Central vertigo and dizziness: epidemiology, differential diagnosis, and common causes. The neurologist, 14(6), 355-364.
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18(1), 6765-6816.
Lim, E. C., Park, J. H., Jeon, H. J., Kim, H. J., Lee, H. J., Song, C. G., & Hong, S. K. (2019). Developing a diagnostic decision support system for benign paroxysmal positional vertigo using a deep-learning model. Journal of clinical medicine, 8(5), 633.
Mao, Y., He, Y., Liu, L., & Chen, X. (2020). Disease Classification Based on Synthesis of Multiple Long Short-Term Memory Classifiers Corresponding to Eye Movement Features. IEEE Access, 8, 151624-151633.
Mostafa, B. E., Kahky, A. O. E., Kader, H. M. A., & Rizk, M. (2014). Central vestibular dysfunction in an otorhinolaryngological vestibular unit: incidence and diagnostic strategy. International archives of otorhinolaryngology, 18, 235-238.
Neuhauser, H. K. (2016). The epidemiology of dizziness and vertigo. Handbook of clinical neurology, 137, 67-82.
Olson, M., Wyner, A., & Berk, R. (2018). Modern neural networks generalize on small data sets. Advances in Neural Information Processing Systems, 31.
Papageorgiou, E., McLean, R. J., & Gottlob, I. (2014). Nystagmus in childhood. Pediatrics & Neonatology, 55(5), 341-351.
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2019). Deep adaptive input normalization for time series forecasting. IEEE transactions on neural networks and learning systems, 31(9), 3760-3765.
Pietkiewicz, P., Pepaś, R., Sułkowski, W. J., Zielińska-Bliźniewska, H., & Olszewski, J. (2012). Electronystagmography versus videonystagmography in diagnosis of vertigo. International journal of occupational medicine and environmental health, 25(1), 59-65.
Sahli, H., Ben Slama, A., Bouzaiane, S., Marrakchi, J., Boukriba, S., & Sayadi, M. (2020). VNG technique for a convenient vestibular neuritis rating. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 8(5), 571-580.
Savage, C. O. (2011, January). Eye position prediction in the case of nystagmus and refixations. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 7924-7927). IEEE.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big data, 6(1), 1-48.
Slama, A. B., Machraoui, A. N., & Sayadi, M. (2014, November). Pupil tracking using active contour model for videonystagmography applications. In International Image Processing, Applications and Systems Conference (pp. 1-5). IEEE.
Slama, A. B., Mouelhi, A., Sahli, H., Manoubi, S., Mbarek, C., Trabelsi, H., ... & Sayadi, M. (2017). A new preprocessing parameter estimation based on geodesic active contour model for automatic vestibular neuritis diagnosis. Artificial intelligence in medicine, 80, 48-62.
Slama, A. B., Sahli, H., Mouelhi, A., Marrakchi, J., Sayadi, M., & Trabelsi, H. (2020). DBN-DNN: discrimination and classification of VNG sequence using deep neural network framework in the EMD domain. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 8(6), 681-690.
Slama, A. B., Mouelhi, A., Sahli, H., Manoubi, S., Lahiani, R., Salah, M. B., ... & Sayadi, M. (2018). A new neural network method for peripheral vestibular disorder recognition using VNG parameter optimisation. International Journal of Biomedical Engineering and Technology, 27(4), 321-336.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Stanton, M., & Freeman, A. M. (2021). Vertigo. In StatPearls [Internet]. StatPearls Publishing.
Strupp, M. L., Straumann, D., & Helmchen, C. (2021). Nystagmus: Diagnosis, Topographic Anatomical Localization and Therapy. Klinische Monatsblätter für Augenheilkunde, 238(11), 1186-1195.
TensorFlow. Uma plataforma completa de código aberto para machine learning. Recuperado em 16 de março, 2022, de https://www.tensorflow.org/
Vallim, M. G. B., Gabriel, G. P., Mezzalira, R., Stoler, G., & Chone, C. T. (2021). Does the video head impulse test replace caloric testing in the assessment of patients with chronic dizziness? A systematic review and meta-analysis. Brazilian journal of otorhinolaryngology, 87, 733-741.
Visscher, R. M., Feddermann-Demont, N., Romano, F., Straumann, D., & Bertolini, G. (2019). Artificial intelligence for understanding concussion: Retrospective cluster analysis on the balance and vestibular diagnostic data of concussion patients. PloS one, 14(4), e0214525.
Wazlawick, R. S. (2014). Metodologia de Pesquisa Para Ciência Da Computação (2nd ed.). Elsevier.
West, P. D. B., Sheppard, Z. A., & King, E. V. (2012). Comparison of techniques for identification of peripheral vestibular nystagmus. The Journal of Laryngology & Otology, 126(12), 1209-1215.
Wipperman, J. (2014). Dizziness and vertigo. Primary Care: Clinics in Office Practice, 41(1), 115-131.
Wu, C. N., Luo, S. D., Chen, S. F., Huang, C. W., Chiang, P. L., Hwang, C. F., ... & Li, Y. L. (2022). Applicability of Oculomotor Tests for Predicting Central Vestibular Disorder Using Principal Component Analysis. Journal of Personalized Medicine, 12(2), 203.
Yiu, Y. H., Aboulatta, M., Raiser, T., Ophey, L., Flanagin, V. L., Zu Eulenburg, P., & Ahmadi, S. A. (2019). DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning. Journal of neuroscience methods, 324, 108307.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Antônia de Maria Rodrigues de Sousa Castro; Ariel Soares Teles; Lucas Daniel Batista Lima; José Everton da Silva Fontenele; Victor Hugo do Vale Bastos; Silmar Silva Teixeira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.