Possíveis opções terapêuticas e gestão da COVID-19

Autores

DOI:

https://doi.org/10.33448/rsd-v11i5.28002

Palavras-chave:

COVID-19; Alveolar tipo 2; Patogênese; Terapêutica.

Resumo

Atualmente, não existe uma terapia eficaz contra a doença de Coronavírus 2019 (COVID-19). Assim, há um requisito crucial para uma terapia eficaz contra o COVID-19. Até onde sabemos, poucas investigações foram conduzidas em células progenitoras AT2 como alvo para o (SARS-CoV-2). Assim, as células progenitoras alveolares tipo 2 podem ser um possível agente terapêutico contra o COVID19. Esta revisão se concentrou na patogênese e fisiopatologia da doença COVID19 em células AT2 e explorou mecanismos potenciais para prevenir a infecção e morte de células progenitoras AT2 como possível terapia contra COVID-19. Propomos que a inibição da via de sinalização do receptor de IL-1, IL 1, NFkB e JNK pode servir como alvo terapêutico para COVID-19.

Referências

Agostini, M. L., Andres, E. L., Sims, A. C., Graham, R. L., Sheahan, T. P., Lu, X., & Jordan, R. (2018). Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 9(2).

Barkauskas, C. E., Cronce, M. J., Rackley, C. R., Bowie, E. J., Keene, D. R., Stripp, B. R., & Hogan, B. L. (2013). Type 2 alveolar cells are stem cells in adult lung. The Journal of clinical investigation, 123(7), 3025-3036.

Bergsbaken, T., Fink, S. L., & Cookson, B. T. (2009). Pyroptosis: host cell death and inflammation. Nature Reviews Microbiology, 7(2), 99-109.

Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. science, 303(5663), 1532-1535.

Cecconi, F., & Levine, B. (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Developmental cell, 15(3), 344-357.

Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Paper presented at the Seminars in immunopathology.

Chatre, C., Roubille, F., Vernhet, H., Jorgensen, C., & Pers, Y.-M. (2018). Cardiac complications attributed to chloroquine and hydroxychloroquine: a systematic review of the literature. Drug safety, 41(10), 919-931.

Chen, R.-c., Tang, X.-p., Tan, S.-y., Liang, B.-l., Wan, Z.-y., Fang, J.-q., & Zhong, N. (2006). Treatment of severe acute respiratory syndrome with glucosteroids: the Guangzhou experience. Chest, 129(6), 1441-1452.

Cheung, O., Chan, J., Ng, C., & Koo, C. (2004). The spectrum of pathological changes in severe acute respiratory syndrome (SARS). Histopathology, 45(2), 119-124.

Costedoat-Chalumeau, N., Dunogué, B., Leroux, G., Morel, N., Jallouli, M., Le Guern, V., & Marmor, M. F. (2015). A critical review of the effects of hydroxychloroquine and chloroquine on the eye. Clinical reviews in allergy & immunology, 49(3), 317-326.

Cron, R. Q., & Chatham, W. W. (2020). The rheumatologist’s role in COVID-19. In: The Journal of Rheumatology.

D’Antiga, L. (2020). Coronaviruses and immunosuppressed patients: the facts during the third epidemic. Liver Transplantation.

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7, 42717.

Ding, Y., Wang, H., Shen, H., Li, Z., Geng, J., Han, H., & Weng, D. (2003). The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 200(3), 282-289.

Du, Y., Tu, L., Zhu, P., Mu, M., Wang, R., Yang, P., & Hu, P. (2020). Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. American journal of respiratory and critical care medicine, 201(11), 1372-1379.

Duprez, L., Vanlangenakker, N., Festjens, N., Herreweghe, F. V., Berghe, T. V., & Vandenabeele, P. (2009). Necrosis: molecular mechanisms and physiological roles. In Essentials of Apoptosis (pp. 599-633): Springer.

Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. Journal of Biomolecular Structure and Dynamics, 1-7.

Erles, K., Toomey, C., Brooks, H. W., & Brownlie, J. (2003). Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology, 310(2), 216-223.

Fehr, A. R., Channappanavar, R., & Perlman, S. (2017). Middle East respiratory syndrome: emergence of a pathogenic human coronavirus. Annual review of medicine, 68, 387-399.

Ferro, F., Elefante, E., Puxeddu, I., Baldini, C., Bartoloni, E., Baratè, C., & Bombardieri, S. (2020). COVID-19: the new challenge for rheumatologists. First update. Clinical and experimental rheumatology, 38(3).

Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M., & Overholtzer, M. (2011). Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nature cell biology, 13(11), 1335-1343.

Franko, J., Pomfy, M., & Prosbová, T. (2000). Apoptosis and cell death. Mechanisms, pharmacology and promise for the future. ACTA MEDICA-HRADEC KRALOVE-, 43(2), 63-68.

Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience trends.

Gao, Y., Li, T., Han, M., Li, X., Wu, D., Xu, Y., & Wang, L. (2020). Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID‐19. Journal of medical virology.

Garcia‐Cremades, M., Solans, B. P., Hughes, E., Ernest, J. P., Wallender, E., Aweeka, F., & Savic, R. M. (2020). Optimizing hydroxychloroquine dosing for patients with COVID‐19: An integrative modeling approach for effective drug repurposing. Clinical Pharmacology & Therapeutics.

Gautret, P., Lagier, J.-C., Parola, P., Meddeb, L., Mailhe, M., Doudier, B., & Dupont, H. T. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International journal of antimicrobial agents, 105949.

Gensel, J. C., Kopper, T. J., Zhang, B., Orr, M. B., & Bailey, W. M. (2017). Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Scientific reports, 7(1), 1-10.

Gordon, C. J., Tchesnokov, E. P., Feng, J. Y., Porter, D. P., & Götte, M. (2020). The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry, 295(15), 4773-4779.

Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., & Lescure, F.-X. (2020). Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine, 382(24), 2327-2336.

Gu, J., & Korteweg, C. (2007). Pathology and pathogenesis of severe acute respiratory syndrome. The American journal of pathology, 170(4), 1136-1147.

Gyebi, G. A., Ogunro, O. B., Adegunloye, A. P., Ogunyemi, O. M., & Afolabi, S. O. (2020). Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): An in silico screening of alkaloids and terpenoids from African medicinal plants. Journal of Biomolecular Structure and Dynamics(just-accepted), 1-19.

Hancock, A. S., Stairiker, C. J., Boesteanu, A. C., Monzón-Casanova, E., Lukasiak, S., Mueller, Y. M., & Katsikis, P. D. (2018). Transcriptome analysis of infected and bystander type 2 alveolar epithelial cells during influenza A virus infection reveals in vivo Wnt pathway downregulation. Journal of virology, 92(21), e01325-01318.

Hayashi, A., Yavas, A., McIntyre, C. A., Ho, Y.-j., Erakky, A., Wong, W., & O’Reilly, E. M. (2020). Genetic and clinical correlates of entosis in pancreatic ductal adenocarcinoma. Modern Pathology, 33(9), 1822-1831.

Haydar, D., Cory, T. J., Birket, S. E., Murphy, B. S., Pennypacker, K. R., Sinai, A. P., & Feola, D. J. (2019). Azithromycin polarizes macrophages to an M2 phenotype via inhibition of the STAT1 and NF-κB signaling pathways. The Journal of Immunology, 203(4), 1021-1030.

Hedrich, C., Bruck, N., Fiebig, B., & Gahr, M. (2012). Anakinra: a safe and effective first-line treatment in systemic onset juvenile idiopathic arthritis (SoJIA). Rheumatology international, 32(11), 3525-3530.

Heinen, N., Klöhn, M., Steinmann, E., & Pfaender, S. (2021). In vitro lung models and their application to study SARS-CoV-2 pathogenesis and disease. Viruses, 13(5), 792.

Henter, J. I., Horne, A., Aricó, M., Egeler, R. M., Filipovich, A. H., Imashuku, S., & Winiarski, J. (2007). HLH‐2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatric blood & cancer, 48(2), 124-131.

Hillaker, E., Belfer, J. J., Bondici, A., Murad, H., & Dumkow, L. E. (2020). Delayed Initiation of Remdesivir in a COVID‐19‐Positive Patient. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., & Nitsche, A. (2020a). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280. e278.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., & Nitsche, A. (2020b). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell.

Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., & Tschopp, J. (2000). Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nature immunology, 1(6), 489-495.

Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., & Tural, A. (2020). First case of 2019 novel coronavirus in the United States. New England Journal of Medicine.

Hu, J. J., Liu, X., Zhao, J., Xia, S., Ruan, J., Luo, X., & Wu, H. (2018). Identification of pyroptosis inhibitors that target a reactive cysteine in gasdermin D. BioRxiv, 365908.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., & Gu, X. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506.

Kawamura, K., Ichikado, K., Suga, M., & Yoshioka, M. (2014). Efficacy of azithromycin for treatment of acute exacerbation of chronic fibrosing interstitial pneumonia: a prospective, open-label study with historical controls. Respiration, 87(6), 478-484.

Kayagaki, N., Stowe, I. B., Lee, B. L., O’Rourke, K., Anderson, K., Warming, S., & Phung, Q. T. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 526(7575), 666-671.

Kin, N., Miszczak, F., Lin, W., Gouilh, M. A., & Vabret, A. (2015). Genomic analysis of 15 human coronaviruses OC43 (HCoV-OC43s) circulating in France from 2001 to 2013 reveals a high intra-specific diversity with new recombinant genotypes. Viruses, 7(5), 2358-2377.

Klionsky, D. J. (2005). The molecular machinery of autophagy: unanswered questions. Journal of cell science, 118(1), 7-18.

Kole, A., He, J., Rivollier, A., Silveira, D. D., Kitamura, K., Maloy, K. J., & Kelsall, B. L. (2013). Type I IFNs regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell–mediated colitis. The Journal of Immunology, 191(5), 2771-2779.

Kubler, P. (2014). Janus kinase inhibitors: Mechanisms of action.

Kumar, P. A., Hu, Y., Yamamoto, Y., Hoe, N. B., Wei, T. S., Mu, D., & Zielonka, E. M. (2011). Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell, 147(3), 525-538.

Lai, C.-C., Liu, Y. H., Wang, C.-Y., Wang, Y.-H., Hsueh, S.-C., Yen, M.-Y., & Hsueh, P.-R. (2020a). Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. Journal of Microbiology, Immunology and Infection, 53(3), 404-412.

Lai, C.-C., Liu, Y. H., Wang, C.-Y., Wang, Y.-H., Hsueh, S.-C., Yen, M.-Y., & Hsueh, P.-R. (2020b). Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARSCoV-2): facts and myths. Journal of Microbiology, Immunology and Infection.

Lamkanfi, M., & Dixit, V. M. (2010). Manipulation of host cell death pathways during microbial infections. Cell host & microbe, 8(1), 44-54.

Lieberman, J., Wu, H., & Kagan, J. C. (2019). Gasdermin D activity in inflammation and host defense. Science immunology, 4(39), eaav1447.

Liu, L., Wei, Q., Lin, Q., Fang, J., Wang, H., Kwok, H., & Tan, Z. (2019). Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI insight, 4(4).

Mackay, H. L., & Muller, P. A. (2019). Biological relevance of cell-in-cell in cancers. Biochemical Society Transactions, 47(2), 725-732.

Magagnoli, J., Narendran, S., Pereira, F., Cummings, T. H., Hardin, J. W., Sutton, S. S., & Ambati, J. (2020). Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. Med.

Marovich, M., Mascola, J. R., & Cohen, M. S. (2020). Monoclonal Antibodies for Prevention and Treatment of COVID-19. Jama.

Marston, H. D., Paules, C. I., & Fauci, A. S. (2018). Monoclonal antibodies for emerging infectious diseases-borrowing from history. The New England journal of medicine, 378(16), 1469.

Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., & Lacey, S. F. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. New England Journal of Medicine, 371(16), 1507-1517.

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., & Collaboration, H. A. S. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England), 395(10229), 1033.

Menet, C. J., Van Rompaey, L., & Geney, R. (2013). Advances in the discovery of selective JAK inhibitors. In Progress in medicinal chemistry (Vol. 52, pp. 153-223): Elsevier.

Michot, J.-M., Albiges, L., Chaput, N., Saada, V., Pommeret, F., Griscelli, F., & Netzer, F. (2020). Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. Annals of Oncology.

Mlynarczuk-Bialy, I., Dziuba, I., Sarnecka, A., Platos, E., Kowalczyk, M., Pels, K. K., & Bialy, L. P. (2020). Entosis: From cell biology to clinical cancer pathology. Cancers, 12(9), 2481.

Molina, J. M., Delaugerre, C., Le Goff, J., Mela-Lima, B., Ponscarme, D., Goldwirt, L., & de Castro, N. (2020). No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect, 50(384), 30085-30088.

Mossel, E. C., Wang, J., Jeffers, S., Edeen, K. E., Wang, S., Cosgrove, G. P., & Pearson, L. D. (2008). SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology, 372(1), 127-135.

Mulay, A., Konda, B., Garcia Jr, G., Yao, C., Beil, S., Villalba, J. M., & Kolls, J. K. (2021). SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. Cell reports, 35(5), 109055.

Najafi-Ghalehlou, N., Roudkenar, M. H., Langerodi, H. Z., & Roushandeh, A. M. (2021). Taming of Covid-19: potential and emerging application of mesenchymal stem cells. Cytotechnology, 73(2), 253-298.

Nicholls, J. M., Poon, L. L., Lee, K. C., Ng, W. F., Lai, S. T., Leung, C. Y., & Lim, W. (2003). Lung pathology of fatal severe acute respiratory syndrome. The Lancet, 361(9371), 1773-1778.

Nigrovic, P. A., Mannion, M., Prince, F. H., Zeft, A., Rabinovich, C. E., Van Rossum, M. A., & Janow, G. (2011). Anakinra as first‐line disease‐modifying therapy in systemic juvenile idiopathic arthritis: report of forty‐six patients from an international multicenter series. Arthritis & rheumatism, 63(2), 545-555.

Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell proliferation, 45(6), 487-498.

Overholtzer, M., Mailleux, A. A., Mouneimne, G., Normand, G., Schnitt, S. J., King, R. W., & Brugge, J. S. (2007). A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell, 131(5), 966-979.

Peiris, J., Lai, S., Poon, L., Guan, Y., Yam, L., Lim, W., & Cheung, M. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet, 361(9366), 1319-1325.

Peiris, J. S. M., Chu, C.-M., Cheng, V. C.-C., Chan, K., Hung, I., Poon, L. L., & Chan, C. (2003). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. The Lancet, 361(9371), 1767-1772.

Qian, Z., Travanty, E. A., Oko, L., Edeen, K., Berglund, A., Wang, J., & Mason, R. J. (2013). Innate immune response of human alveolar type ii cells infected with severe acute respiratory syndrome–coronavirus. American journal of respiratory cell and molecular biology, 48(6), 742-748.

Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., & Wang, W. (2020). Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clinical Infectious Diseases.

Rabinowitz, J. D., & White, E. (2010). Autophagy and metabolism. science, 330(6009), 1344-1348.

Raj, V. S., Osterhaus, A. D., Fouchier, R. A., & Haagmans, B. L. (2014). MERS: emergence of a novel human coronavirus. Current opinion in virology, 5, 58-62.

Ramos-Casals, M., Brito-Zerón, P., López-Guillermo, A., Khamashta, M. A., & Bosch, X. (2014). Adult haemophagocytic syndrome. The Lancet, 383(9927), 1503-1516.

Rauch, I., Hainzl, E., Rosebrock, F., Heider, S., Schwab, C., Berry, D., & Loy, A. (2014). Type I interferons have opposing effects during the emergence and recovery phases of colitis. European Journal of Immunology, 44(9), 2749-2760.

Rockx, B., Baas, T., Zornetzer, G. A., Haagmans, B., Sheahan, T., Frieman, M., & van den Brand, J. (2009). Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. Journal of virology, 83(14), 7062-7074.

Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive care medicine, 46(5), 846-848.

Sapp, J. L., Alqarawi, W., MacIntyre, C. J., Tadros, R., Steinberg, C., Roberts, J. D., & Krahn, A. D. (2020). Guidance on minimizing risk of drug-induced ventricular arrhythmia during treatment of COVID-19: a statement from the Canadian Heart Rhythm Society. Canadian Journal of Cardiology.

Savarino, A., Boelaert, J. R., Cassone, A., Majori, G., & Cauda, R. (2003). Effects of chloroquine on viral infections: an old drug against today's diseases. The Lancet infectious diseases, 3(11), 722-727.

Schnabel, A., & Hedrich, C. M. (2019). Childhood vasculitis. Frontiers in Pediatrics, 6, 421.

Seguin, A., Galicier, L., Boutboul, D., Lemiale, V., & Azoulay, E. (2016). Pulmonary involvement in patients with hemophagocytic lymphohistiocytosis. Chest, 149(5), 1294-1301.

Seo, S.-U., & Kweon, M.-N. (2019). Virome–host interactions in intestinal health and disease. Current opinion in virology, 37, 63-71.

Shang, L., Zhao, J., Hu, Y., Du, R., & Cao, B. (2020). On the use of corticosteroids for 2019-nCoV pneumonia. Lancet (London, England), 395(10225), 683.

Sheahan, T., Sims, A., Leist, S., Schäfer, A., Won, J., Brown, A., & Clarke, M. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020; 11: 222. In: s41 467-019-13940-6.

Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research.

Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., & Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526(7575), 660-665.

Siegel, D., Hui, H. C., Doerffler, E., Clarke, M. O., Chun, K., Zhang, L., & Ross, B. (2017). Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo [2, 1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. In: ACS Publications.

Sims, A. C., Baric, R. S., Yount, B., Burkett, S. E., Collins, P. L., & Pickles, R. J. (2005). Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. Journal of virology, 79(24), 15511-15524.

Sönmez, H. E., Demir, S., Bilginer, Y., & Özen, S. (2018). Anakinra treatment in macrophage activation syndrome: a single center experience and systemic review of literature. Clinical Rheumatology, 37(12), 3329-3335.

Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C., Zhou, J., & Gao, G. F. (2016). Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in microbiology, 24(6), 490-502.

Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., & Lei, X. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148(1-2), 213-227.

Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., & Wu, J. (2020). Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. Journal of clinical medicine, 9(2), 462.

Tang, D., Comish, P., & Kang, R. (2020). The hallmarks of COVID-19 disease. Plos Pathogens, 16(5), e1008536.

Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P., & Kroemer, G. (2019). The molecular machinery of regulated cell death. Cell research, 29(5), 347-364.

Tang, N., Bai, H., Chen, X., Gong, J., Li, D., & Sun, Z. (2020). Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of thrombosis and haemostasis, 18(5), 1094-1099.

Tang, N. L.-S., Chan, P. K.-S., Wong, C.-K., To, K.-F., Wu, A. K.-L., Sung, Y.-M., & Lam, C. W.-K. (2005). Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clinical chemistry, 51(12), 2333-2340.

To, K., & Lo, A. W. (2004). Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS‐CoV) and its putative receptor, angiotensin‐converting enzyme 2 (ACE2). The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 203(3), 740-743.

Tse, G. M., To, K., Chan, P. K., Lo, A., Ng, K., Wu, A., & Chan, K. (2004). Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). Journal of clinical pathology, 57(3), 260-265.

Usmani, G. N., & Woda, B. (2013). a., Newburger PE. Advances in understanding the pathogenesis of HLH. Br J Haematol, 161(5), 609-622.

Vincent, M., Bergeron, E., & Benjannet, S. i in.(2005), Chloroquine is a potent inhibitor of SARS coronavirus infection and spread,„. Virology Journal, 2(1), 69.

Walkey, A. J., & Wiener, R. S. (2012). Macrolide antibiotics and survival in patients with acute lung injury. Chest, 141(5), 1153-1159.

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology, 94(7), e00127-00120.

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research, 30(3), 269-271.

Weinheimer, V. K., Becher, A., Tönnies, M., Holland, G., Knepper, J., Bauer, T. T., & Szymanski, K. (2012). Influenza A viruses target type II pneumocytes in the human lung. The Journal of infectious diseases, 206(11), 1685-1694.

Wu, C., Chen, X., Cai, Y., Zhou, X., Xu, S., Huang, H., & Zhang, Y. (2020). Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA internal medicine, 180(7), 934-943.

Wu, J., Wu, X., Zeng, W., Guo, D., Fang, Z., Chen, L., & Li, C. (2020). Chest CT findings in patients with coronavirus disease 2019 and its relationship with clinical features. Investigative radiology, 55(5), 257.

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., & Zhu, L. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine, 8(4), 420-422.

Yan, Y., Zou, Z., Sun, Y., Li, X., Xu, K.-F., Wei, Y., & Jiang, C. (2013). Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell research, 23(2), 300-302.

Yee, M., Domm, W., Gelein, R., Bentley, K. L. d. M., Kottmann, R. M., Sime, P. J., & O’Reilly, M. A. (2017). Alternative progenitor lineages regenerate the adult lung depleted of alveolar epithelial type 2 cells. American journal of respiratory cell and molecular biology, 56(4), 453-464.

Yi, Y., Lagniton, P. N., Ye, S., Li, E., & Xu, R.-H. (2020). COVID-19: what has been learned and to be learned about the novel coronavirus disease. International journal of biological sciences, 16(10), 1753.

Zaki, A. M., Van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D., & Fouchier, R. A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine, 367(19), 1814-1820.

Zeng, C., Zeng, B., Dong, C., Liu, J., & Xing, F. (2020). Rho-ROCK signaling mediates entotic cell death in tumor. Cell death discovery, 6(1), 1-3.

Zhang, L., Zhang, F., Yu, W., He, T., Yu, J., Yi, C. E., & Chen, Z. (2006). Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. Journal of medical virology, 78(1), 1-8.

Zhang, W., Zhao, Y., Zhang, F., Wang, Q., Li, T., Liu, Z., & Yan, X. (2020). The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clinical Immunology, 108393.

Zhang, X., Song, K., Tong, F., Fei, M., Guo, H., Lu, Z., & Zheng, C. (2020). First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood advances, 4(7), 1307.

Zhou, D., Dai, S.-M., & Tong, Q. (2020). COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. Journal of Antimicrobial Chemotherapy.

Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., & Mani, S. (2018). Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 556(7700), 255-258.

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., & Huang, C.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273.

Zhu, X., Wu, T., Chi, Y., Ge, Y., Wu, B., Zhou, M., & Cui, L. (2018). Pyroptosis induced by enterovirus A71 infection in cultured human neuroblastoma cells. Virology, 521, 69-76.

Downloads

Publicado

14/04/2022

Como Citar

AYOBAMI MATTHEW, O. .; ADEFUNKE KAFAYAT, O. .; AYODEJI MATHIAS, A.; SALIU, J. A. .; HAYATU, R. M. .; MALACHY, O. I. .; XIAOJU, Z. . Possíveis opções terapêuticas e gestão da COVID-19. Research, Society and Development, [S. l.], v. 11, n. 5, p. e47711528002, 2022. DOI: 10.33448/rsd-v11i5.28002. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28002. Acesso em: 21 nov. 2024.

Edição

Seção

Artigos de Revisão