A proteômica por trás das alterações clínicas e temporais na Doença de Parkinson: uma revisão de literatura

Autores

DOI:

https://doi.org/10.33448/rsd-v11i5.28475

Palavras-chave:

Doença de Parkinson; Proteínas PARK; Percepção temporal.

Resumo

A Doença de Parkinson (DP) é caracterizada pela neurodegeneração progressiva dos neurônios dopaminérgicos, de caráter crônico e resultante em distúrbios do movimento e comportamentais. Ainda há muitas lacunas sobre a etiologia e patogenia da DP. Desse modo, visando fortalecer evidências que sirvam de ferramenta para auxílio diagnóstico e futuros tratamentos, esta revisão sistemática tem como objetivo relacionar e analisar estudos de proteômica das PARK, ou seja, da classe de proteínas parks expressas que estejam associadas a patogênese, alterações clínicas e temporais da DP. Foram selecionados 261 trabalhos para análise de elegibilidade com base em seu título e resumo, resultando em 56 trabalhos, com leitura completa, incluídos nesse estudo. O resultado observado direciona para a compreensão da expressão genética para uma classe de proteínas que participam das vias metabólicas celulares associadas a etiologia da DP. Estudos genéticos aplicados a proteômica investigaram loci ligados à doença dos genes PARK e sua expressão gênica para assim relacionar as vias celulares que contribuem para a DP. Observou-se que as proteínas PARK corroboram para a patogenia da DP, destacamos a hipótese de alteração na percepção do tempo. Portanto, estudos exploratórios e sistemáticos podem direcionar futuras investigações e fortalecer evidências aplicadas a clínica.

Referências

Avanzino, L., Pelosin, E., Vicario, C. M., Lagravinese, G., Abbruzzese, G., & Martino, D. (2016). Time Processing and Motor Control in Movement Disorders. Frontiers in human neuroscience, 10, 631. https://doi.org/10.3389/fnhum.2016.00631.

An, C., Pu, X., Xiao, W., & Zhang, H. (2018). Expression of the DJ-1 protein in the serum of Chinese patients with Parkinson's disease. Neuroscience letters, 665, 236–239. https://doi.org/10.1016/j.neulet.2017.12.023.

Azkona G, López de Maturana R, Del Rio P, Sousa A1, Vazquez N, Zubiarrain A, Jimenez-Blasco D, Bolaños J. P, Morales B, Auburger G, Arbelo J. M, & Sánchez-Pernaute R. (2018). LRRK2 Expression is Deregulated in Fibroblasts and Neurons from Parkinson Patients with Mutations in PINK1. Molecular neurobiology, 55(1), 506–516. https://doi.org/10.1007/s12035-016-0303-7.

Balestrino R, & Schapira A. H. V. (2020). Parkinson disease. European Journal of Neurology, 27(1), 27-42. https://doi: 10.1111/ene.14108.

Berwick D. C, & Harvey, K. (2014). The regulation and deregulation of Wnt signaling by PARK genes in health and disease. Journal of molecular cell biology, 6(1), 3–12. https://doi.org/10.1093/jmcb/mjt037.

Berwick D C. 1, & Harvey K. (2013). LRRK2: an éminence grise of Wnt-mediated neurogenesis? Frontiers in Cellular Neuroscience, 7, 82. https://doi.org/ 10.3389/fncel.2013.00082.

Bonilha V. L, Bell BA, Rayborn ME, Yang, X., Kaul, C., Grossman G. H, Samuels IS, Hollyfield J. G, Xie, C., & Cai, H. (2015). Shadrach KG2. Loss of DJ-1 elicits retinal abnormalities, visual dysfunction, and increased oxidative stress in mice. Experimental eye research, 139, 22–36. https://doi.org/10.1016/j.exer.2015.07.014.

Cha S H, Choi Y R, Heo C. H, Kang S. J, Joe EH, Jou, I., Kim H. M, & Park S. M. (2015). Loss of parkin promotes lipid rafts-dependent endocytosis through accumulating caveolin-1: implications for Parkinson's disease. Mol Neurodegeneration, 10, 63. https://doi.org/10.1186/s13024-015-0060-5.

Choi D. J, Yang H, Gaire S, Lee K. A, An J, Kim B G, Jou I, Park S. M, & Joe E. H. (2020). Critical roles of astrocytic-CCL2-dependent monocyte infiltration in a DJ-1 knockout mouse model of delayed brain repair. Glia, 68(10), 2086-2101. https://doi.org/10.1002/glia.23828.

Culleton B. A, Lall, P., Kinsella G. K, Doyle, S., McCaffrey, J., Fitzpatrick D. A, & Burnell A. M. (2015). A role for the Parkinson's disease protein DJ-1 as a chaperone and antioxidant in the anhydrobiotic nematode Panagrolaimus superbus. Cell stress & chaperones, 20(1), 121–137. https://doi.org/10.1007/s12192-014-0531-6.

Da Silva C. F, Morgero K. C, Mota A. M, Piemonte M. E, & Baldo M. V. (2015). Aging and Parkinson's disease as functional models of temporal order perception. Neuropsychologia, 78, 1–9. https://doi.org/10.1016/j.neuropsychologia.2015.09.029.

Daniel G, & Moore DJ. (2015). Modeling LRRK2 Pathobiology in Parkinson's Disease: From Yeast to Rodents. Current topics in behavioral neurosciences, 22, 331–368. https://doi.org/10.1007/7854_2014_311.

Dave K. D, De Silva, S., Sheth N. P, Ramboz, S., Beck M. J, Quang, C., Switzer R. C, Ahmad SO, Sunkin S. M, Walker, D., Cui, X., Fisher D. A, McCoy A. M, Gamber, K., Ding, X., Goldberg MS, Benkovic S. A, Haupt, M., Baptista MA, Fiske B. K, Sherer T. B, & Frasier M. A. (2014). Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiology of Disease, 70, 190-203. https://doi.org/10.1016/j.nbd.2014.06.009.

De Miranda B. R, Rocha E. M, Bai Q, El Ayadi A, Hinkle D, Burton E. A, & Timothy Greenamyre J. (2018). Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease. Neurobiology of disease, 115, 101–114. https://doi.org/10.1016/j.nbd.2018.04.008.

Feng D. D, Cai W, & Chen X. (2015). The associations between Parkinson's disease and cancer: the plot thickens. Translational neurodegeneration, 4, 20. https://doi.org/10.1186/s40035-015-0043-z.

Gao, F., Chen, D., Si, J., Hu, Q., Qin, Z., Fang, M., & Wang, G. (2015). The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Human molecular genetics, 24(9), 2528–2538. https://doi.org/10.1093/hmg/ddv017.

Goo H. G, Rhim H, & Kang S. (2017). Pathogenic Role of Serine Protease HtrA2/Omi in Neurodegenerative Diseases. Current protein & peptide Science, 18(7), 746-757. https://doi.org/10.2174/1389203717666160311115750.

Hwang C. J, Kim Y. E, Son D. J, Park M. H, Choi D. Y, Park P. H, Hellström, M., Han S. B, Oh K. W, Park E. K, & Hong J. T. (2017). Parkin deficiency exacerbates ethanol-induced dopaminergic neurodegeneration by P38 pathway-dependent inhibition of autophagy and mitochondrial function. Redox biology, 11, 456–468. https://doi.org/10.1016/j.redox.2016.12.008.

Janković M. Z, Kresojević N. D, Dobričić V. S, Marković V. V, Petrović I. N, Novaković I. V, & Kostić V. S. (2015). Identification of novel variants in LRRK2 gene in patients with Parkinson's disease in Serbian population. Journal of the neurological sciences, 353(1-2), 59–62. https://doi.org/10.1016/j.jns.2015.04.002.

Kesh S, Kannan R. R, Sivaji K, & Balakrishnan A. (2021). Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson's disease model. Neurosci Lett, 740, 135426. https://doi.org/10.1016/j.neulet.2020.135426.

Khang R, Park C, & Shin J H. (2015). Dysregulation of parkin in the substantia nigra of db/db and high-fat diet mice. Neuroscience, 294, 182–192. https://doi.org/10.1016/j.neuroscience.2015.03.017.

Kim J. M, Cha S. H, Choi Y. R, Jou, I., Joe E. H, & Park S. .M. (2016). DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression. Scientific reports, 6, 28823. https://doi.org/10.1038/srep28823.

Kim K. S, Kim J. S, Park J. Y, Suh YH, Jou, I., Joe E. H, & Park S. M. (2013). DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes. Human molecular genetics, 22(23), 4805–4817. https://doi.org/10.1093/hmg/ddt332.

Kim M. S, Lee S, Yun S, Suh P. G, Park J, Cui M, Choi S, Cha S. S, & Jin W. (2018). Inhibitory effect of tartrate against phosphate-induced DJ-1 aggregation. Int J Biol Macromol, 107(Pt B): 1650-1658. https://doi.org/10.1016/j.ijbiomac.2017.10.022.

Klosowiak J. L, Park, S., Smith K. P, French M. E, Focia P. J, Freymann D. M, & Rice S. E. (2016). Structural insights into Parkin substrate lysine targeting from minimal Miro substrates. Scientific reports, 6, 33019. https://doi.org/10.1038/srep33019.

Koentjoro B, Park JS, & Sue C. M. (2017). Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease. Scientific reports, 7, 44373. https://doi.org/10.1038/srep44373.

Kong S. M, Chan B. K, Park J. S, Hill K. J, Aitken J. B, Cottle L, Farghaian H, Cole A. R, Lay P. A, Sue C. M, & Cooper A. A. (2014). Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-Synuclein externalization via exosomes. Human molecular genetics, 23(11), 2816–2833. https://doi.org/10.1093/hmg/ddu099.

Larsen S. B, Hanss Z, & Krüger R. (2018). The genetic architecture of mitochondrial dysfunction in Parkinson's disease. Cell and tissue research, 373(1), 21–37. https://doi.org/10.1007/s00441-017-2768-8.

Lucas M, Chaves F, Teixeira S, Carvalho D, Peressutti C, Bittencourt J, Velasques B, Menéndez-González M, Cagy M, Piedade R, Nardi AE, Machado S, Ribeiro P, & Arias-Carrión O. (2013). Time perception impairs sensory-motor integration in Parkinson's disease. International archives of medicine, 6(1), 39. https://doi.org/10.1186/1755-7682-6-39.

Magalhães F, Rocha K, Marinho V, Ribeiro J, Oliveira T, Ayres C, Bento T, Leite F, Gupta D, Bastos VH, Velasques B, Ribeiro P, Orsini M, & Teixeira S. (2018). Neurochemical changes in basal ganglia affect time perception in parkinsonians. Journal of biomedical science, 25(1), 26. https://doi.org/10.1186/s12929-018-0428-2.

Manzoni C, Denny P, Lovering RC, & Lewis P. A. (2015). Computational analysis of the LRRK2 interactome. PeerJ, 3, e778. https://doi.org/10.7717/peerj.778.

Merski M, Moreira C, Abreu R. M, Ramos M. J, Fernandes P. A, Martins L. M, Pereira P. J. B, & Macedo-Ribeiro S. (2017). Molecular motion regulates the activity of the Mitochondrial Serine Protease HtrA2. Cell death & disease, 8(10), e3119. https://doi.org/10.1038/cddis.2017.487.

Ogawa, I., Saito, Y., Saigoh, K., Hosoi, Y., Mitsui, Y., Noguchi, N., & Kusunoki, S. (2014). The significance of oxidized DJ-1 protein (oxDJ-1) as a biomarker for Parkinson's disease. Brain Nerve, 66(4): 471-477. http://europepmc.org/abstract/MED/24748095

Pan P. Y, & Yue Z. (2014). Genetic causes of Parkinson's disease and their links to autophagy regulation. Parkinsonism & related disorders, 20 Suppl 1, S154–S157. https://doi.org/10.1016/S1353-8020(13)70037-3.

Panicker N, Ge P, Dawson V. L, & Dawson T. M. (2021). The cell biology of Parkinson's disease. J Cell Biol, 220(4), e202012095. https://doi.org/10.1083/jcb.202012095.

Park J. S, Blair N. F, & Sue C. M. (2015). The role of ATP13A2 in Parkinson's disease: Clinical phenotypes and molecular mechanisms. Movement disorders: official journal of the Movement Disorder Society, 30(6), 770–779. https://doi.org/10.1002/mds.26243.

Park J. S, Koentjoro B, Veivers D, Mackay-Sim A, & Sue C. M. (2014). Parkinson's disease associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction. Human molecular genetics, 23(11), 2802–2815. https://doi.org/10.1093/hmg/ddt623.

Park J. S, & Sue C. M. (2017). Hereditary Parkinsonism-Associated Genetic Variations in PARK9 Locus Lead to Functional Impairment of ATPase Type 13A2. Current protein & peptide science, 18(7), 725–732. https://doi.org/10.2174/1389203717666160311121534.

Park M. H, Lee H. J, Lee H. L, Son DJ, Ju J. H, Hyun B. K, Jung SH, Song J. K, Lee D. H, Hwang C. J, Han S. B, Kim, S., & Hong J. T. (2017). Parkin Knockout Inhibits Neuronal Development via Regulation of Proteasomal Degradation of p21. Theranostics, 7(7), 2033-2045. https://doi.org/10.7150/thno.19824.

Parsanejad M, Zhang Y, Qu D, Irrcher I2, Rousseaux M. W, Aleyasin H, Kamkar F, Callaghan S, Slack RS, Mak T. W, Lee S, Figeys D, & Park D. S. (2014). Regulation of the VHL/HIF-1 pathway by DJ-1. The Journal of neuroscience : the official journal of the Society for Neuroscience, 34(23), 8043–8050. https://doi.org/10.1523/JNEUROSCI.1244-13.2014.

Riley B. E, Gardai S. J, Emig-Agius D, Bessarabova M, Ivliev A. E, Schüle B, Alexander J, Wallace W, Halliday G. M, Langston J. W, Braxton S, Yednock T, Shaler T, & Johnston J. A. (2014). Systems-based analyses of brain regions functionally impacted in Parkinson's disease reveals underlying causal mechanisms. PloS one, 9(8), e102909. https://doi.org/10.1371/journal.pone.0102909.

Sánchez-Lanzas R, & Castaño J. G. (2021). Mitochondrial LonP1 protease is implicated in the degradation of unstable Parkinson's disease-associated DJ-1/PARK 7 missense mutants. Sci Rep, 11(1), 7320. https://doi.org/10.1038/s41598-021-86847-2.

Singh Y, Trautwein C, Dhariwal A, Salker MS, Alauddin M, Zizmare L, Pelzl L, Feger M, Admard J, Casadei N, Föller M, Pachauri V, Park D. S, Mak T. W, Frick J. S, Wallwiener D, Brucker S. Y, Lang F, & Riess O. (2020). DJ-1 (Park7) affects the gut microbiome, metabolites, and the development of innate lymphoid cells (ILCs). Sci Rep, 10(1), 16131. https://doi.org/10.1038/s41598-020-72903-w.

Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista M. A, Fiske B. K, Fell M. J, Morrow J. A, Reith A. D, Alessi D. R, & Mann M. (2016). Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. eLife, 5, e12813. https://doi.org/10.7554/eLife.12813.

Taipa, R., Pereira, C., Reis, I., Alonso, I., Bastos-Lima, A., Melo-Pires, M., & Magalhães, M. (2016). DJ-1 linked parkinsonism (PARK7) is associated with Lewy body pathology. Brain: a journal of neurology, 139(Pt 6), 1680–1687. https://doi.org/10.1093/brain/aww080.

Teixeira S, Magalhães F, Marinho V, Velasques B, & Ribeiro P. (2016). Proposal for using time estimation training for the treatment of Parkinson's disease. Medical hypotheses, 95, 58–61. https://doi.org/10.1016/j.mehy.2016.08.012.

Terriente-Felix A, Wilson E. L, & Whitworth AJ. (2020). Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes. PLoS Genet, 16(10), e1008844. https://doi.org/10.1371/journal.pgen.1008844.

Tsika E, & Moore D. J. (2013). Contribution of GTPase activity to LRRK2-associated Parkinson's disease. Small GTPases, 4(3), 164–170. https://doi.org/10.4161/sgtp.25130.

Tsika E, Nguyen A. P, Dusonchet J, Colin P, Schneider B. L, & Moore D. J. (2015). Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson's disease. Neurobiology of disease, 77, 49-61. https://doi.org/10.1016/j.nbd.2015.02.019.

Weissbach A, Saranza G, & Domingo A. (2021). Combined dystonias: clinical and genetic updates. J Neural Transm (Vienna), 128(4), 417-429. https://doi.org/10.1007/s00702-020-02269-w.

Xiong, R., Wang, Z., Zhao, Z., Li, H., Chen, W., Zhang, B., Wang, L., Wu, L., Li, W., Ding, J., & Chen, S. (2014). MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiology of aging, 35(3), 705–714. https://doi.org/10.1016/j.neurobiolaging.2013.09.027.

Yamagishi, Y., Saigoh, K., Saito, Y., Ogawa, I., Mitsui, Y., Hamada, Y., Samukawa, M., Suzuki, H., Kuwahara, M., Hirano, M., Noguchi, N., & Kusunoki, S. (2018). Diagnosis of Parkinson's disease and the level of oxidized DJ-1 protein. Neurosci Res, 128, 58-62. https://doi.org/10.1016/j.neures.2017.06.008.

Yoo D, Choi J. H, Im J. H, Kim M. J, Kim H. J, Park S. S, & Jeon B. (2020). Young-Onset Parkinson's Disease with Impulse Control Disorder Due to Novel Variants of F-Box Only Protein 7. J Mov Disord, 13(3), 225-228. https://doi.org/10.14802/jmd.20026.

Yoon J. H, Ann E. J, Kim M. Y, Ahn J. S, Jo E. H, Lee H. J, Lee H. W, Lee Y. C, Kim J. S, & Park H. S. (2017). Parkin mediates neuroprotection through activation of Notch1 signaling. Neuroreport, 28(4), 181–186. https://doi.org/10.1097/WNR.0000000000000726.

Zhou Z. D, Xie S. P, Sathiyamoorthy S, Saw W. T, Sing T. Y, Ng S. H, Chua H. P, Tang A. M, Shaffra F, Li Z, Wang H, Ho P. G, Lai M. K, Angeles D. C, Lim TM, & Tan E. K. (2015). F-box protein 7 mutations promote protein aggregation in mitochondria and inhibit mitophagy. Hum Mol Genet, 24(22), 6314-30. https://doi.org/10.1093/hmg/ddv340.

Downloads

Publicado

11/04/2022

Como Citar

SILVA, V. N. C. da .; MAGALHÃES, F. .; FERNANDES, J. R. N. .; OLIVEIRA, A. T. de .; CASTRO, H. I. R. .; FERNANDES , T. R. S. .; CASTRO, V. de F. V. de . A proteômica por trás das alterações clínicas e temporais na Doença de Parkinson: uma revisão de literatura. Research, Society and Development, [S. l.], v. 11, n. 5, p. e41011528475, 2022. DOI: 10.33448/rsd-v11i5.28475. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28475. Acesso em: 24 nov. 2024.

Edição

Seção

Artigos de Revisão