Pinos intrarradiculares de fibra de vidro: comparação entre diferentes técnicas para restauração de raízes alargadas

Autores

DOI:

https://doi.org/10.33448/rsd-v11i6.28948

Palavras-chave:

CAD-CAM; Técnica para Retentor Intrarradicular; Força Compressiva; Restauração Dentária Permanente; Prótese dentária; Ensino em saúde.

Resumo

Este estudo in vitro teve como objetivo analisar a resistência à fratura e o padrão de falha de raízes bovinas restauradas com diferentes pinos de fibra intrarradicular e materiais de núcleo, sem férula. Para realizar este estudo, cinquenta raízes de incisivos bovinos foram tratadas endodonticamente, e divididas em cinco grupos (n=10), de acordo com as seguintes técnicas de pino de fibra e materiais de núcleo: pino de fibra de vidro pré-fabricado e resina composta bulk-fill (PF-BF ); pino pré-fabricado de fibra de vidro e cimento resinoso de dupla função (PF-RC); pino anatômico direto e resina composta bulk-fill (AP-BF); Poste e núcleo de fibra de vidro integrado CAD-CAM (CAD-PC); e pino de fibra de vidro ajustável e resina composta bulk-fill (AD-BF). Os pinos de fibra intrarradicular foram cimentados com cimento resinoso de dupla função(Allcem Core, FGM), restaurados com coroas de resina composta CAD-CAM (Brava, FGM) e submetidos a carga. Os dados foram analisados ​​por modelos lineares generalizados (p<0,05). Foi revelado que AP-BF apresentou menores valores de resistência à fratura em comparação com PF-RC (p=0,006) e AD-BF (p=0,013). Fraturas envolvendo o terço apical apenas em CAD-PC. O PF-RC apresentou apenas padrões de falha envolvendo a restauração do núcleo ou foram limitados ao terço cervical. PF-RC e AD-BF apresentaram padrões de falha limitados a restaurações de núcleo mais altas, em comparação com outros grupos (60% e 50% respectivamente). Fraturas envolvendo o terço médio foram observadas nos grupos PF-BF, AP-BF, CAD-PC e AD-BF. Em conclusão, a maioria das técnicas de pinos de fibra intrarradicular utilizadas e diferentes materiais de núcleo apresentaram valores de resistência à fratura semelhantes. Os pinos e núcleos de fibra de vidro integrados CAD-CAM apresentaram mais fraturas envolvendo os terços médio e apical do que os outros grupos.

Referências

Agrawal A., & Mala K. (2014). An in vitro comparative evaluation of physical properties of four different types of core materials. Journal of Conservative Dentistry, 17(3), 230–233. 10.4103/0972-0707.131782

Clavijo, V. G. R., Reis, J. M. dos S. N., Kabbach, W., Silva, A. L. F. e, Oliveira Junior, O. B. de, & Andrade, M. F. de. (2009). Fracture strength of flared bovine roots restored with different intraradicular posts. Journal of Applied Oral Science, 17(6), 574–578. doi:10.1590/s1678-77572009000600007

Da Silva, N. R., Raposo, L. H. A., Versluis, A., Fernandes-Neto, A. J., & Soares, C. J. (2010). The effect of post, core, crown type, and ferrule presence on the biomechanical behavior of endodontically treated bovine anterior teeth. The Journal of Prosthetic Dentistry, 104(5), 306–317. doi:10.1016/s0022-3913(10)60146-1

Delgaudio Pignataro, R. R., Samico, R. P., Mendes Campaner, L., Bottino, M. A., Borges, A., & Tribst, J. P. (2021). Influence of Different Fibreglass Post Geometries on the Stress Distribution and Pull-Out Bond Strength Before and After Mechanical Cycling. European endodontic journal, 6(2), 170–176. https://doi.org/10.14744/eej.2020.95967

Estrela, C. (2018). Metodologia Científica: ciência, ensino, pesquisa (3a ed). Artes Médicas.

Gama, M., Balbinot, G. S., Ferreira, G. C., Mota, E. G., Leitune, V., & Collares, F. M. (2021). CAD/CAM Milled Glass Fiber Posts: Adaptation and Mechanical Behavior in Flared Root Canals. Operative dentistry, 46(4), 438–447. https://doi.org/10.2341/20-198-L

Gomes, G. M., Monte-Alto, R. V., Santos, G. O., Fai, C. K., Loguercio, A. D., Gomes, O. M. M., Gomes J. C., & Reis, A. (2016). Use of a Direct Anatomic Post in a Flared Root Canal: A Three-year Follow-up. Operative Dentistry, 41(1), 23–28. doi:10.2341/14-275-t

Juloski, J., Radovic, I., Goracci, C., Vulicevic, Z. R., & Ferrari, M. (2012). Ferrule Effect: A Literature Review. Journal of Endodontics, 38(1), 11–19. 10.1016/j.joen.2011.09.024.

Kar, S. (2017). Effect of Different Ferrule Length on Fracture Resistance of Endodontically Treated Teeth: An In vitro Study. Journal of Clinical and Diagnostic Research, 11(4): 49–52. 10.7860/jcdr/2017/24669.9675

Koch, A. T. A., Binus, S. M., Holzschuh, B., Petschelt, A., Powers, J. M., & Berthold, C. (2014). Restoration of endodontically treated teeth with major hard tissue loss - influence of post surface design on pull-out bond strength of fiber-reinforced composite posts. Dental Traumatology, 30(4), 270–279. doi:10.1111/edt.12089

Liu, P., Deng, X.-L., & Wang, X.-Z. (2010). Use of a CAD/CAM-fabricated glass fiber post and core to restore fractured anterior teeth: A clinical report. The Journal of Prosthetic Dentistry, 103(6), 330–333. doi:10.1016/s0022-3913(10)60071-6

Lohbauer, U., Belli, R., & Ferracane, J. L. (2013). Factors Involved in Mechanical Fatigue Degradation of Dental Resin Composites. Journal of Dental Research, 92(7), 584–591. doi:10.1177/0022034513490734.

Magne, P., Goldberg, J., Edelhoff, D., & Güth, J.-F. (2016). Composite Resin Core Buildups With and Without Post for the Restoration of Endodontically Treated Molars Without Ferrule. Operative Dentistry, 41(1), 64–75. doi:10.2341/14-258-l

Melo, M. P. de, Valle, A. L. do, Pereira, J. R., Bonachela, W. C., Pegoraro, L. F., & Bonfante, G. (2005). Evaluation of fracture resistance of endodontically treated teeth restored with prefabricated posts and composites with varying quantities of remaining coronal tooth structure. Journal of Applied Oral Science, 13(2), 141–146. doi:10.1590/s1678-77572005000200009

Mongruel, G. G., Mongruel, G. O. M., Gomes, J. C., Loguercio, A. D., Calixto, A. L., & Reis, A. (2014). Evaluation of different restorative techniques for filling flared root canals: fracture resistance and bond strength after mechanical fatigue. Journal of Adhesive Dentistry, 16(3):267–276. 10.3290/j.jad.a31940

Naumann, M., Blankenstein, F., & Dietrich, T. (2005). Survival of glass fibre reinforced composite post restorations after 2 years—an observational clinical study. Journal of Dentistry, 33(4), 305–312. 10.1016/j.jdent.2004.09.005

Newman, M. P., Yaman, P., Dennison, J., Rafter, M., & Billy, E. (2003). Fracture resistance of endodontically treated teeth restored with composite posts. The Journal of Prosthetic Dentistry, 89(4), 360–367. doi:10.1067/mpr.2003.75

Nobrega V. (2015). A new intraradicular fiber-resin retainer system. The Scientific World Journal, 2015:751425.

Pang, J., Feng, C., Zhu, X., Liu, B., Deng, T., Gao, Y., Ying, L. I., & KE, J. (2018). Fracture behaviors of maxillary central incisors with flared root canals restored with CAD/CAM integrated glass fiber post-and-core. Dental Materials Journal, 38(1):114–119 doi:10.4012/dmj.2017-394

Ruschel, G. H., Gomes, É. A., Silva-Sousa, Y. T., Pinelli, R. G. P., Sousa-Neto, M. D., Pereira, G. K. R., & Spazzin, A. O. (2018). Mechanical properties and superficial characterization of a milled CAD-CAM glass fiber post. Journal of the Mechanical Behavior of Biomedical Materials, 82, 187–192. 10.1016/j.jmbbm.2018.03.035

Santos, A. F. V., Meira, J. B. C., Tanaka, C. B., Xavier, T. A., Ballester, R. Y., Lima, R. G., Pfeifer, C. S., & Versluis, A. (2010). Can Fiber Posts Increase Root Stresses and Reduce Fracture? Journal of Dental Research, 89(6), 587–591. 10.1177/0022034510363382

Santos Pantaleón, D., Morrow, B. R., Cagna, D. R., Pameijer, C. H., & Garcia-Godoy, F. (2018). Influence of remaining coronal tooth structure on fracture resistance and failure mode of restored endodontically treated maxillary incisors. The Journal of Prosthetic Dentistry, 119(3), 390–396. doi:10.1016/j.prosdent.2017.05.00

Silva, C. F., Cabral, L. C., Navarro de Oliveira, M., da Mota Martins, V., Machado, A. C., Blumenberg, C., Paranhos, L. R., & Santos-Filho, P. (2021). The influence of customization of glass fiber posts on fracture strength and failure pattern: A systematic review and meta-analysis of preclinical ex-vivo studies. Journal of the mechanical behavior of biomedical materials, 118, 104433. https://doi.org/10.1016/j.jmbbm.2021.104433

Silva, G. R. da, Santos-Filho, P. C. de F., Simamoto-Júnior, P. C., Martins, L. R. M., Mota, A. S. da, & Soares, C. J. (2011). Effect of post type and restorative techniques on the strain and fracture resistance of flared incisor roots. Brazilian Dental Journal, 22(3), 230–237. doi:10.1590/s0103-64402011000300009

Smith, C., Schuman, N., & Wasson, W. (1998). Biomechanical criteria for evaluating prefabricated post-and-core systems: A guide for the restorative dentist. Quintessence International, 29(5), 305–312.

Theodosopoulou, J. N., & Chochlidakis, K. M. (2009). A Systematic Review of Dowel (Post) and Core Materials and Systems. Journal of Prosthodontics, 18(6), 464–472. 10.1111/j.1532-849x.2009.00472.x

Walcher, J. G., Leitune, V. C. B., Collares, F. M., de Souza Balbinot, G., & Samuel, S. M. W. (2018). Physical and mechanical properties of dual functional cements—an in vitro study. Clinical Oral Investigations, 23(4):1715–1721. doi:10.1007/s00784-018-2598-4

Wandscher, V. F., Bergoli, C. D., de Oliveira, A. F., Kaizer, O. B., Souto Borges, A. L., Limberguer, I. da F., & Valandro, L. F. (2015). Fatigue surviving, fracture resistance, shear stress and finite element analysis of glass fiber posts with different diameters. Journal of the Mechanical Behavior of Biomedical Materials, 43, 69–77. 10.1016/j.jmbbm.2014.11.016

Warangkulkasemkit, S., & Pumpaluk, P. (2019). Comparison of physical properties of three commercial composite core build up materials. Dental Materials Journal, 38:177–181. 10.4012/dmj.2018-038

Downloads

Publicado

25/04/2022

Como Citar

RABELO, T. L. .; ANTUNES, A. N. da G. .; PARDINI, D. S. .; ALBUQUERQUE, R. de C. .; ANDRÉ, C. B. .; OLIVEIRA, H. H. A. .; SERAIDARIAN, P. I. . Pinos intrarradiculares de fibra de vidro: comparação entre diferentes técnicas para restauração de raízes alargadas. Research, Society and Development, [S. l.], v. 11, n. 6, p. e21111628948, 2022. DOI: 10.33448/rsd-v11i6.28948. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28948. Acesso em: 26 nov. 2024.

Edição

Seção

Ciências da Saúde