Dificuldades e desafios da caracterização físico-química dos méis de abelhas sem ferrão
DOI:
https://doi.org/10.33448/rsd-v11i6.28996Palavras-chave:
Mel; Abelha sem ferrão; Propriedades físico-químico; Padrão comercialização; Prática sustentável.Resumo
As abelhas sem ferrão formam um grupo de abelhas eussociais pertencentes à tribo Meliponini (Hymenoptera: Apidae) e são distribuídos nas regiões tropicais e subtropicais do planeta. O Brasil, principal território em termos de diversidade dessas abelhas, apresenta uma gama de regiões fitogeográficas que podem influenciar nas propriedades dos méis e atualmente não possui uma legislação que represente a realidade territorial como um todo, tornando os parâmetros inatingíveis para produtores comercializarem o mel. Além da importância econômica para os produtores, esse produto possui características sensoriais diferenciadas dos méis tradicionalmente consumidos no Brasil, tornando-o um produto com alto valor agregado. Somado a isso, a produção do mel é uma prática sustentável e proporciona a conservação das abelhas, que no geral, estão ameaçadas principalmente por interferência antrópica. Assim, o objetivo deste trabalho foi analisar as produções científicas publicadas em bases de dados consolidadas para entender como as abelhas lidam com as diferentes condições ambientais e geográficas e como isso reflete nas características do mel, ademais, gerar dados para elaboração de uma proposta de padronização do mel e de comercialização. Para isso, foi utilizado o software StART, com elaboração de um protocolo de revisão sistemática. Foram listados 93 artigos na busca inicial nas bases de dados Web of Science, Scopus e Google Scholar e após o processo de seleção e extração de dados, 50 artigos foram selecionados. Na fase de sumarização, foi observado que ainda não existe um consenso entre os pesquisadores de como estipular um padrão e faixas de referência para as análises.
Referências
Al-Hatamleh, M. A. I., Boer, J. C., Wilson, K. L., Plebanski, M., Mohamud, R., & Mustafa, M. Z. (2020). Antioxidant-based medicinal properties of stingless bee products: Recent progress and future directions. Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060923
Alvarez-Suarez, J. M., Giampieri, F., Brenciani, A., Mazzoni, L., Gasparrini, M., González-Paramás, A. M., Santos-Buelga, C., Morroni, G., Simoni, S., Forbes-Hernández, T. Y., Afrin, S., Giovanetti, E., & Battino, M. (2018). Apis mellifera vs Melipona beecheii Cuban polifloral honeys: A comparison based on their physicochemical parameters, chemical composition and biological properties. Lwt, 87, 272–279. https://doi.org/10.1016/j.lwt.2017.08.079
Alves, R. M. de O., Viana, J. L., Sousa, H. de A. C., & Waldschmidt, A. M. (2018). Physico-chemical Parameters of Honey From Melipona mondury Smith, 1863 (Hymenoptera: Apidae: Meliponini). Journal of Agricultural Science, 10(7), 196. https://doi.org/10.5539/jas.v10n7p196
Ávila, S., Beux, M. R., Ribani, R. H., & Zambiazi, R. C. (2018). Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends in Food Science and Technology, 81(September), 37–50. https://doi.org/10.1016/j.tifs.2018.09.002
Ávila, S., Hornung, P. S., Teixeira, G. L., Beux, M. R., Lazzarotto, M., & Ribani, R. H. (2018). A chemometric approach for moisture control in stingless bee honey using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 26(6), 379–388. https://doi.org/10.1177/0967033518805254
Ávila, S., Hornung, P. S., Teixeira, G. L., Malunga, L. N., Apea-Bah, F. B., Beux, M. R., Beta, T., & Ribani, R. H. (2019). Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Research International, 123(January), 1–10. https://doi.org/10.1016/j.foodres.2019.01.068
Ávila, S., Lazzarotto, M., Hornung, P. S., Teixeira, G. L., Ito, V. C., Bellettini, M. B., Beux, M. R., Beta, T., & Ribani, R. H. (2019). Influence of stingless bee genus (Scaptotrigona and Melipona) on the mineral content, physicochemical and microbiological properties of honey. Journal of Food Science and Technology, 56(10), 4742–4748. https://doi.org/10.1007/s13197-019-03939-8
Barbiéri, C., & Francoy, T. M. (2020). Theoretical model for interdisciplinary analysis of human activities: Meliponiculture as an activity that promotes sustainability. Ambiente e Sociedade, 23. https://doi.org/10.1590/1809-4422ASOC20190020R2VU2020L4AO
Bijlsma, L., De Bruijn, L. L. M., Martens, E. P., & Sommeijer, M. J. (2006). Water content of stingless bee honeys (Apidae, Meliponini): Interspecific variation and comparison with honey of Apis mellifera. Apidologie, 37(4), 480–486. https://doi.org/10.1051/apido:2006034
Biluca, F. C., Braghini, F., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis, 50, 61–69. https://doi.org/10.1016/j.jfca.2016.05.007
Braat, L. C., & de Groot, R. (2012). The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosystem Services, 1(1), 4–15. https://doi.org/10.1016/j.ecoser.2012.07.011
Braghini, F., Biluca, F. C., Ottequir, F., Gonzaga, L. V., da Silva, M., Vitali, L., Micke, G. A., Costa, A. C. O., & Fett, R. (2020). Effect of different storage conditions on physicochemical and bioactive characteristics of thermally processed stingless bee honeys. Lwt, 131(April), 109724. https://doi.org/10.1016/j.lwt.2020.109724
Braghini, F., Biluca, F. C., Schulz, M., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2021). Stingless bee honey: a precious but unregulated product - reality and expectations. Food Reviews International, 00(00), 1–30. https://doi.org/10.1080/87559129.2021.1884875
Cardona, Y., Torres, A., & Hoffmann, W. (2019). Colombian stingless bee honeys characterized by multivariate analysis of physicochemical properties. Apidologie, 50(6), 881–892. https://doi.org/10.1007/s13592-019-00698-5
Carina Biluca, F., Braghini, F., de Campos Ferreira, G., Costa dos Santos, A., Helena Baggio Ribeiro, D., Valdemiro Gonzaga, L., Vitali, L., Amadeu Micke, G., Carolina Oliveira Costa, A., & Fett, R. (2021). Physicochemical parameters, bioactive compounds, and antibacterial potential of stingless bee honey. Journal of Food Processing and Preservation, 45(2), 1–11. https://doi.org/10.1111/jfpp.15127
CBD. (2009). The Convention on Biological Diversity -Year in review 2008. In CBD.
Chen, Y. H., Chuah, W. C., & Chye, F. Y. (2021). Effect of drying on physicochemical and functional properties of stingless bee honey. Journal of Food Processing and Preservation, 45(4), 1–15. https://doi.org/10.1111/jfpp.15328
Chong, K. Y., Chin, N. L., & Yusof, Y. A. (2017). Thermosonication and optimization of stingless bee honey processing. Food Science and Technology International, 23(7), 608–622. https://doi.org/10.1177/1082013217713331
Chuttong, B., Chanbang, Y., Sringarm, K., & Burgett, M. (2016). Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chemistry, 192, 149–155. https://doi.org/10.1016/j.foodchem.2015.06.089
Cuevas-Glory, L. F., Pino, J. A., Sosa-Moguel, O., Sauri-Duch, E., & Bringas-Lantigua, M. (2017). Optimization of the Spray-Drying Process for Developing Stingless Bee Honey Powder. International Journal of Food Engineering, 13(1). https://doi.org/10.1515/ijfe-2016-0217
da Costa, I. F., & Toro, M. J. U. (2021). Evaluation of the antioxidant capacity of bioactive compounds and determination of proline in honeys from Pará. Journal of Food Science and Technology, 58(5), 1900–1908. https://doi.org/10.1007/s13197-020-04701-1
da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051
De Almeida-Muradian, L. B., Stramm, K. M., Horita, A., Barth, O. M., Da Silva de Freitas, A., & Estevinho, L. M. (2013). Comparative study of the physicochemical and palynological characteristics of honey from Melipona subnitida and Apis mellifera. International Journal of Food Science and Technology, 48(8), 1698–1706. https://doi.org/10.1111/ijfs.12140
Delgado, C., Mejía, K., & Rasmussen, C. (2020). Management practices and honey characteristics of Melipona eburnea in the peruvian amazon. Cien. Rural, 50(12), 1–10. https://doi.org/10.1590/0103-8478cr20190697
Echeverrigaray, S., Scariot, F. J., Foresti, L., Schwarz, L. V., Rocha, R. K. M., da Silva, G. P., Moreira, J. P., & Delamare, A. P. L. (2021). Yeast biodiversity in honey produced by stingless bees raised in the highlands of southern Brazil. International Journal of Food Microbiology, 347(January). https://doi.org/10.1016/j.ijfoodmicro.2021.109200
Espinoza-Toledo, C., Vázquez-Ovando, A., Torres de los Santos, R., López-García, A., Albores-Flores, V., & Grajales-Conesa, J. (2018). Stingless bee honeys from Soconusco, Chiapas: A complementary approach. International Journal of Food Science and Technology, 66(4), 1536–1546. https://doi.org/10.15517/rbt.v66i4.32181
Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Di Thommazo, A., & Belgamo, A. (2016). Improvements in the StArt tool to better support the systematic review process. ACM International Conference Proceeding Series, 01-03-June. https://doi.org/10.1145/2915970.2916013
Fernandes, R. T., Rosa, I. G., & Conti-Silva, A. C. (2020). Honey from Tiúba stingless bees (Melipona fasciculata) produced in different ecosystems: physical and sensory studies. Journal of the Science of Food and Agriculture, 100(9), 3748–3754. https://doi.org/10.1002/jsfa.10415
Fuad, A. M. A., Anwar, N. Z. R., Zakaria, A. J., Shahidan, N., & Zakaria, Z. (2018). Physicochemical characteristics of Malaysian honeys influenced by storage time and temperature. Journal of Fundamental and Applied Sciences, 9(2S), 841. https://doi.org/10.4314/jfas.v9i2s.52
Fuenmayor, C. A., Zuluaga-Domínguez, C. M., Díaz-Moreno, A. C., & Quicazán, M. C. (2012). Miel de angelita’: Nutritional composition and physicochemical properties of Tetragonisca angustula honey. Interciencia, 37(2), 142–147.
Gela, A., Hora, Z. A., Kebebe, D., & Gebresilassie, A. (2021). Physico-chemical characteristics of honey produced by stingless bees (Meliponula beccarii) from West Showa zone of Oromia Region, Ethiopia. Heliyon, 7(1), e05875. https://doi.org/10.1016/j.heliyon.2020.e05875
Guerrini, A., Bruni, R., Maietti, S., Poli, F., Rossi, D., Paganetto, G., Muzzoli, M., Scalvenzi, L., & Sacchetti, G. (2009). Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chemistry, 114(4), 1413–1420. https://doi.org/10.1016/j.foodchem.2008.11.023
Hipólito, J., Coutinho, J., Mahlmann, T., Santana, T. B. R., & Magnusson, W. E. (2021). Legislation and pollination: Recommendations for policymakers and scientists. Perspectives in Ecology and Conservation, 19(1), 1–9. https://doi.org/10.1016/j.pecon.2021.01.003
IJ, F., AB, M. H., I, S., & M, L. (2018). Physicochemical Characteristics of Malaysian Stingless Bee Honey from Trigona Species. IIUM Medical Journal Malaysia, 17(1). https://doi.org/10.31436/imjm.v17i1.1030
Ismail, W. I. W., Hussin, N. N., Mazlan, S. N. F., Hussin, N. H., & Radzi, M. N. F. M. (2018). Physicochemical Analysis, Antioxidant and Anti Proliferation Activities of Honey, Propolis and Beebread Harvested from Stingless Bee. IOP Conference Series: Materials Science and Engineering, 440(1). https://doi.org/10.1088/1757-899X/440/1/012048
Jaffé, R., Pope, N., Carvalho, A. T., Maia, U. M., Blochtein, B., de Carvalho, C. A. L., Carvalho-Zilse, G. A., Freitas, B. M., Menezes, C., de Fátima Ribeiro, M., Venturieri, G. C., & Imperatriz-Fonseca, V. L. (2015). Bees for Development: Brazilian Survey Reveals How to Optimize Stingless Beekeeping. PLOS ONE, 10(3), e0121157. https://doi.org/10.1371/journal.pone.0121157
Jimenez, M., Beristain, C. I., Azuara, E., Mendoza, M. R., & Pascual, L. A. (2016). Physicochemical and antioxidant properties of honey from Scaptotrigona mexicana bee. Journal of Apicultural Research, 55(2), 151–160. https://doi.org/10.1080/00218839.2016.1205294
Khongkwanmueang, A., Nuyu, A., Straub, L., & Maitip, J. (2020). Physicochemical Profiles, Antioxidant and Antibacterial Capacity of Honey from Stingless Bee Tetragonula laeviceps Species Complex. E3S Web of Conferences, 141, 03007. https://doi.org/10.1051/e3sconf/202014103007
Koffler, S., Barbiéri, C., Ghilardi-Lopes, N. P., Leocadio, J. N., Albertini, B., Francoy, T. M., & Saraiva, A. M. (2021). A buzz for sustainability and conservation: The growing potential of citizen science studies on bees. Sustainability (Switzerland), 13(2), 1–15. https://doi.org/10.3390/su13020959
Koser, J. R., Barbiéri, C., & Francoy, T. M. (2020). Legislation on meliponiculture in Brazil: A social and environmental demand. Sustainability in Debate, 11(1), 164–178. https://doi.org/10.18472/SustDeb.v11n1.2020.30319
Lage, L. G. A., Coelho, L. L., Resende, H. C., Tavares, M. G., Campos, L. A. O., & Fernandes-Salomão, T. M. (2012). Honey physicochemical properties of three species of the Brazilian Melipona. Anais Da Academia Brasileira de Ciencias, 84(3), 605–608. https://doi.org/10.1590/S0001-37652012005000051
Mail, M. H., Ab Rahim, N., Amanah, A., Khawory, M. H., Shahudin, M. A., & Seeni, A. (2019). FTIR and elementary analysis of Trigona honey, Apis honey and adulterated honey mixtures. Biomedical and Pharmacology Journal, 12(4), 2011–2017. https://doi.org/10.13005/bpj/1833
Marcolin, L. C., Lima, L. R., de Oliveira Arias, J. L., Berrio, A. C. B., Kupski, L., Barbosa, S. C., & Primel, E. G. (2021). Meliponinae and Apis mellifera honey in southern Brazil: Physicochemical characterization and determination of pesticides. Food Chemistry, 363(May), 130175. https://doi.org/10.1016/j.foodchem.2021.130175
Maringgal, B., Hashim, N., Tawakkal, I. S. M. A., Mohamed, M. T. M., & Shukor, N. I. A. (2019). Phytochemical compositions and antioxidant activities of malaysian stingless bee honey. Pertanika Journal of Science and Technology, 27(S1), 15–28.
Martínez, R. A., Schvezov, N., Brumovsky, L. A., & Román, A. B. P. (2018). Influence of temperature and packaging type on quality parameters and antimicrobial properties during Yateí honey storage. Food Science and Technology, 38, 196–202. https://doi.org/10.1590/1678-457x.17717
Michener, C. D. (2007). Bees of the world. In American Scientist (2 ed, Vol. 78, Issue 2). The Johns Hopkins University Press.
Mohamad Ghazali, N. S., Yusof, Y. A., Mohd Ghazali, H., Chin, N. L., Othman, S. H., Manaf, Y. N., Chang, L. S., & Mohd Baroyi, S. A. H. (2021). Effect of surface area of clay pots on physicochemical and microbiological properties of stingless bee (Geniotrigona thoracica) honey. Food Bioscience, 40(April 2020), 100839. https://doi.org/10.1016/j.fbio.2020.100839
Nordin, A., Sainik, N. Q. A. V., Chowdhury, S. R., Saim, A. Bin, & Idrus, R. B. H. (2018). Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. Journal of Food Composition and Analysis, 73(February), 91–102. https://doi.org/10.1016/j.jfca.2018.06.002
Omar, A. F., Mardziah Yahaya, O. K., Tan, K. C., Mail, M. H., & Seeni, A. (2016). The influence of additional water content towards the spectroscopy and physicochemical properties of genus Apis and stingless bee honey . Optical Sensing and Detection IV, 9899(April 2016), 98990Y. https://doi.org/10.1117/12.2227060
Ooi, T. C., Yaacob, M., Rajab, N. F., Shahar, S., & Sharif, R. (2021). The stingless bee honey protects against hydrogen peroxide-induced oxidative damage and lipopolysaccharide-induced inflammation in vitro. Saudi Journal of Biological Sciences, 28(5), 2987–2994. https://doi.org/10.1016/j.sjbs.2021.02.039
Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C., Ascher, J. S., Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C., & Ascher, J. S. (2021). Article Global Patterns and Drivers of Bee Distribution Global Patterns and Drivers of Bee Distribution. Current Biology, 1–8. https://doi.org/10.1016/j.cub.2020.10.053
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007
Razali, M. T. A., Zainal, Z. A., Maulidiani, M., Shaari, K., Zamri, Z., Idrus, M. Z. M., Khatib, A., Abas, F., Ling, Y. S., Rui, L. L., & Ismail, I. S. (2018). Classification of raw stingless bee honeys by bee species origins using the NMR- and LC-MS-based metabolomics approach. Molecules, 23(9), 1–18. https://doi.org/10.3390/molecules23092160
Rodríguez-Malaver, A. J., Rasmussen, C., Gutiérrez, M. G., Gil, F., Nieves, B., & Vit, P. (2009). Properties of honey from ten species of Peruvian stingless bees. Natural Product Communications, 4(9), 1221–1226. https://doi.org/10.1177/1934578x0900400913
Schvezov, N., Pucciarelli, A. B., Valdes, B., & Dallagnol, A. M. (2020). Characterization of yateí (Tetragonisca fiebrigi) honey and preservation treatments: Dehumidification, pasteurization and refrigeration. Food Control, 111(December 2019), 107080. https://doi.org/10.1016/j.foodcont.2019.107080
Selvaraju, K., Vikram, P., Soon, J. M., Krishnan, K. T., & Mohammed, A. (2019). Melissopalynological, physicochemical and antioxidant properties of honey from West Coast of Malaysia. Journal of Food Science and Technology, 56(5), 2508–2521. https://doi.org/10.1007/s13197-019-03728-3
Shamsudin, S., Selamat, J., Sanny, M., Abd. Razak, S. B., Jambari, N. N., Mian, Z., & Khatib, A. (2019). Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. International Journal of Food Properties, 22(1), 238–263. https://doi.org/10.1080/10942912.2019.1576730
Shamsudin, S., Selamat, J., Sanny, M., Shamsul Bahari, A. R., Jambari, N. N., & Khatib, A. (2019). A comparative characterization of physicochemical and antioxidants properties of processed Heterotrigona itama honey from different origins and classification by chemometrics analysis. Molecules, 24(21), 1–20. https://doi.org/10.3390/molecules24213898
Sharin, S. N., Sani, M. S. A., Jaafar, M. A., Yuswan, M. H., Kassim, N. K., Manaf, Y. N., Wasoh, H., Zaki, N. N. M., & Hashim, A. M. (2021). Discrimination of Malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning. Food Chemistry, 346(June 2020), 128654. https://doi.org/10.1016/j.foodchem.2020.128654
Siddiqui, A. J., Musharraf, S. G., Choudhary, M. I., & Rahman, A.-. (2017). Application of analytical methods in authentication and adulteration of honey. Food Chemistry, 217, 687–698. https://doi.org/10.1016/j.foodchem.2016.09.001
Silva, I. A. A., Souza, A. L., Cordeiro, A. M. T. M., Soledade, L. E. B., Queiroz, N., & Souza, A. G. (2013). Thermal degradation of honeys and evaluation of physicochemical properties. Journal of Thermal Analysis and Calorimetry, 114(1), 353–358. https://doi.org/10.1007/s10973-012-2926-x
Tuksitha, L., Chen, Y. L. S., Chen, Y. L., Wong, K. Y., & Peng, C. C. (2018). Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). Journal of Asia-Pacific Entomology, 21(2), 563–570. https://doi.org/10.1016/j.aspen.2018.03.007
Umaña, E., Zamora, G., Aguilar, I., Arias, M. L., Pérez, R., Sánchez, L. A., Solórzano, R., & Herrera, E. (2021). Physicochemical differentiation of stingless bee honeys from Costa Rica. Journal of Apicultural Research, 0(0), 1–10. https://doi.org/10.1080/00218839.2021.1903737
Vit, P., Oddo, L. P., Marano, M. L., & Salas de Mejias, E. (1998). Venezuelan stingless bee honeys characterized by multivariate analysis of physicochemical properties. Apidologie, 29(5), 377–389. https://doi.org/10.1051/apido:19980501
Wong, P., Ling, H. S., Chung, K. C., Yau, T. M. S., & Gindi, S. R. A. (2019). Chemical Analysis on the Honey of Heterotrigona itama and Tetrigona binghami from Sarawak, Malaysia. Sains Malaysiana, 48(8), 1635–1642. https://doi.org/10.17576/jsm-2019-4808-09
Ya, H., Fatiha Norhisham, N., Mohamed, M., Sadek, N., Endrini, S., & Riau Ujung Pekanbaru Riau Province, J. (2019). Evaluation of Physicochemical Properties of Trigona sp. Stingless Bee Honey from Various Districts of Johor (Kajian fizikokimia terhadap Trigon sp. Madu Lebah Kelulut di Daerah Johor). Jurnal Kejuruteraan SI, 2(1), 59–67. https://doi.org/10.17576/jkukm-2019-si2
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Mayara Faleiros-Quevedo; Tiago Maurício Francoy
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.