Atividade antifúngica in vitro de extratos aquosos do bagaço da Oliveira (Olea europaea L.) frente a isolados fúngicos causadores de candidíase, dermatofitose e esporotricose em humanos e animais

Autores

DOI:

https://doi.org/10.33448/rsd-v11i6.29090

Palavras-chave:

Extrato; Sucetibilidade in vitro; Oleuropeina; Hidroxitirosol; Citotoxicidade.

Resumo

As infecções fúngicas tem se tornado cada vez mais frequentes nos últimos anos. Destacam-se as dermatofitoses, esporotricoses e candidoses. Em função da resistência aos fármacos disponíveis e tendo em vista diversificar o âmbito farmacêutico, realizou-se o estudo a partir do bagaço de O. europaea. Estudos relacionados à oliveira não abordam o bagaço que representa potencial alternativa econômica devido a suas toneladas descartadas pela indústria. Objetivo deste trabalho foi avaliar o perfil sensibilidade in vitro de isolados fúngicos frente extratos aquosos de bagaço de O. europeae. Testar toxicidade celular dos extratos utilizados e determinar presença e quantidade dos compostos fenólicos (oleuropeína e hidroxitirosol). Não foi observado atividade antifúngica desses extratos aquosos diante dos isolados de dermatófitos e Sporothrix brasiliensis. Dos isolados de Candida spp. testados para susceptibilidade, dois foram sensíveis ao extrato de decocção do bagaço a partir da concentração 50 mg/ml de DEC 10’. Na toxicidade da decocção do bagaço de oliveira, observou-se concentrações a partir de 12,5 mg/ml permitiram que pelo menos 50% das células MDBK se mantivessem viáveis. As concentrações de 3,13 até 0,78 mg/ml foram seguras, pois ocorreu 100% de viabilidade celular. Dos compostos (CLAE) hidroxitirosol variou a concentração de 8 x10-4 a 34 x10-4 mg/ml em INF 10’ e de 11 x10-4 a 81 x10-4 mg/ml em DEC 10’. Para oleuropeína, os extratos DEC 10’ variaram sua concentração de 87 x10-3 a 7 x10-3 mg/ml, já para INF 10’ os valores foram de 23 x10-3 mg/ml a não detectado em algumas variedades.

Biografia do Autor

Márcia Kutscher Ripoll, Universidade Federal do Rio Grande do Sul

Pós-graduanda do Programa de Pós-Graduação em Ciências Veterinárias pela Universiade Federal do Rio Grande do Sul (UFRGS).

Otávia de Almeida Martins, Universidade Federal de Pelotas

Assistente de laboratório da Universidade Federal de Pelotas (UFPEL), desenvolve as atividades no Centro de Diagnostico em Micologia Veterinária na FaVet.

Stefanie Bressan Waller, Universidade Federal de Pelotas

Pós-doutorado Júnior (CNPq).

Anna Luiza Silva, Universidade Federal de Pelotas

Mestre em Ciências Animais pela universidade Federal de Pelotas (UFPel), atualmente empreendedora e empresária autônoma na área de Medicina Veterinária. 

Renata Osório de Faria, Universidade Federal de Pelotas

Professora Adjunto da Faculdade de Veterinária da Universidade Federal de Pelotas (UFPel)

Angelita dos Reis Gomes, Universidade Federal de Pelotas

Médica Veterinária responsável tècnica no Centro de Diagnóstico e Pesquisa em Micologia Veterinária (MicVet).

Tony Picoli, Faculdade de Americana; Universidade São Francisco

Professor da Faculdade Americana e da Universidade São Francisco, atando na àrea de Medicina Veterinária e Fisioterapia.

Mário Carlos Araújo Meireles, Universidade Federal de Pelotas

Prestador de serviço acadêmico voluntário, orientador do programa de Pós-graduação em Veterinária da Universidade Federal de Pelotas e pesquisador Bolsista 1C do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Tanize dos Santos Acunha, Universidade de Ribeirão Preto

Pós-doutorado na Universidade de Ribeirão Preto e responsável por análises de fitoterápicos da unidade da Farmácia Viva "Farmácia da Natureza da Terra de Ismael" localizada em Ribeirão Preto.

Fabio Clasen Chaves, Scotts Miracle-Gro

Professor adjunto do DCTA-FAEM-UFPel, atualmente em licença. Trabalhando na Scotts Miracle-Gro como Analitycal Scientist.

João Roberto Braga de Mello, Universidade Federal do Rio Grande do Sul

Professor titular da Universidade Federal do Rio Grande do Sul (UFRGS) e Médico Veterinário do Hospital de Clínicas Veterinárias da UFRGS.

Referências

Battinelli, L., Daniele, C., Cristiani, M., Bisignano, G., Saija, A., & Mazzanti, G. (2006). In vitro antifungal and anti-elastase activity of some aliphatic aldehydes from Olea europaea L. fruit. Phytomedicine, 13(8), 558-563.

Bisignano, G., Laganà, M. G., Trombetta, D., Arena, S., Nostro, A., Uccella, N., & Saija, A. (2001). In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L. FEMS Microbiology Letters, 198(1), 9-13.

Boateng, L., Ansong, R., Owusu, W., & Steiner-Asiedu, M. (2016). Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Medical Journal, 50(3), 189-196.

Böhmer, B. W. (2018). Potencial antimicrobiano e antitumoral de compostos fenólicos extraídos do bagaço oriundo da obtenção de azeite de oliva (Olea europea L.) (Master's thesis, Universidade Federal de Pelotas).

Bubonja-Sonje, M., Giacometti, J., & Abram, M. (2011). Antioxidant and antilisterial activity of olive oil, cocoa and rosemary extract polyphenols. Food Chemistry, 127(4), 1821-1827.

Cesar, K. K. F. A., Batista, A. K. R., Paula, L. R., da Silva, R. T., & da Silva, F. L. (2021). Ação antifúngica de extratos e frações de Annona muricata L. sobre Candida spp. Research, Society and Development, 10(5).

Coelho, J. L. G., Saraiva, E. M. S., de Carvalho Mendes, R., & de Santana, W. J. (2020). Dermatófito: resistência a antifúngicos. Brazilian Journal of Development, 6 (10), 74675-74686.

Coutinho, E. F., Ribeiro, F. C., & Cappellaro, T. H. (2009). Cultivo de oliveira (Olea europaea L.). Embrapa Clima Temperado-Sistema de Produção (INFOTECA-E).

Coutinho, E. F. (Ed.). (2015). Cultivares. Oliveira: aspectos técnicos e cultivo no sul do Brasil. Embrapa. 58 – 85.

Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., & Perlin, D. S. (2015). Mechanisms of antifungal drug resistance. Cold Spring Harbor Perspectives in Medicine, 5(7), a019752.

Crawford, A., & Wilson, D. (2015). Essential metals at the host–pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Research, 15(7).

El, S. N., & Karakaya, S. (2009). Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutrition reviews, 67(11), 632-638.

Ferreira, W. A., Aguiar, G. S., Pessoa, H. R., da Costa, D. C. F., & Zago, L. (2021). Potencial antitumoral dos compostos fenólicos de produtos da oliveira (Olea europaea L.): uma revisão integrativa da literatura. Research, Society and Development, 10(13).

Furneri, P. M., Marino, A., Saija, A., Uccella, N., & Bisignano, G. (2002). In vitro antimycoplasmal activity of oleuropein. International Journal of Antimicrobial Agents, 20(4), 293-296.

Gandul‐Rojas, B., & Minguez‐Mosquera, M. I. (1996). Chlorophyll and carotenoid composition in virgin olive oils from various Spanish olive varieties.

Journal of the Science of Food and Agriculture, 72(1), 31-39.

Giuffrida, D., Salvo, F., Salvo, A., La Pera, L., & Dugo, G. (2007). Pigments composition in monovarietal virgin olive oils from various sicilian olive varieties. Food Chemistry, 101(2), 833-837.

Goldsmith, C. D., Stathopoulos, C. E., Golding, J. B., & Roach, P. D. (2014). Fate of the phenolic compounds during olive oil production with the traditional press method. International Food Research Journal, 21(1).

Gupta, A. K., & Cooper, E. A. (2008). Update in antifungal therapy of dermatophytosis. Mycopathologia, 166(5), 353-367.

Johann, S., Pizzolatti, M. G., Donnici, C. L., & Resende, M. A. D. (2007). Antifungal properties of plants used in Brazilian traditional medicine against clinically relevant fungal pathogens. Brazilian Journal of Microbiology, 38(4), 632-637.

Korukluoglu, M., Sahan, Y., Yigit, A., & Karakas, R. (2006). Antifungal activity of olive leaf (Olea Europaea L.) extracts from the Trilye region of Turkey. Annals of Microbiology, 56(4), 359-362.

Lacaz, C. D. S., & Del Negro, G. (1994). Drogas antifúngicas: Terapêutica das micoses. In Farmacologia. 1156-90.

Lee, O. H., & Lee, B. Y. (2010). Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology, 101(10), 3751-3754.

Luchetti, F. (2002). Importance and future of olive oil in the world market—An introduction to olive oil. European Journal of Lipid Science and Technology, 104(9‐10), 559-563.

Markin, D., Duek, L., & Berdicevsky, I. (2003). In vitro antimicrobial activity of olive leaves. Antimikrobielle Wirksamkeit von Olivenblättern in vitro. Mycoses, 46(3‐4), 132-136.

Martiny, T., Ribeiro, P. B., Da Rosa, G. S., & Moraes, C. C. (2016). Atividade Antimicrobiana de Extratos Foliares de Olea europaea L. Anais do Salão Internacional de Ensino, Pesquisa e Extensão, 8(4).

Meireles, M. C. A., & Nascente, P. D. S. (2009). Micologia Veterinária. Ed. Universitária UFPEL, 456.

Mahmoud, T. S., Marques, M. R., Pessoa, C. D. Ó., Lotufo, L. V., Magalhães, H. I., Moraes, M. O. D. & Oliveira, J. E. D. (2011). In vitro cytotoxic activity of Brazilian Middle West plant extracts. Revista Brasileira de Farmacognosia, 21, 456-464.

Mukherjee, P. K., Leidich, S. D., Isham, N., Leitner, I., Ryder, N. S., & Ghannoum, M. A. (2003). Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrobial Agents and Chemotherapy, 47(1), 82-86.

NCCL (2002). Método de Referência para Testes de Diluição em Caldo para a Determinação da Sensibilidade a Terapia Antifúngica dos Fungos Filamentosos.

Nunes, M. A., Costa, A. S., Bessada, S., Santos, J., Puga, H., Alves, R. C. & Oliveira, M. B. P. (2018). Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid-and water-soluble components. Science of the Total Environment, 644, 229-236.

Odds, F. C., Brown, A. J., & Gow, N. A. (2003). Antifungal agents: mechanisms of action. Trends in Microbiology, 11(6), 272-279.

Papon, N., Courdavault, V., Clastre, M., & Bennett, R. J. (2013). Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog,9(9), e1003550.

Pereira, A. P., Ferreira, I. C., Marcelino, F., Valentão, P., Andrade, P. B., Seabra, R. & Pereira, J. A. (2007). Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules, 12(5), 1153-1162.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed (pp. 3-9). UAB/NTE/UFSM. Disponível em: https://repositorio. ufsm. br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica. pdf.

Pillar, V. D. P., Müller, S. C., Castilhos, Z. M. S., Jacques, A. V. A. (2009). Campos Sulinos: conservação e uso sustentável da biodiversidade. Ministério do Meio Ambiente.

Presti, G., Guarrasi, V., Gulotta, E., Provenzano, F., Provenzano, A., Giuliano, S., Giacomazza, D. (2017). Bioactive compounds from extra virgin olive oils: Correlation between phenolic content and oxidative stress cell protection. Biophysical Chemistry, 230, 109-116.

Poester, V. R., Mattei, A. S., Madrid, I. M., Pereira, J. T. B., Klafke, G. B., Sanchotene, K. O. & Xavier, M. O. (2018). Sporotrichosis in Southern Brazil, towards an epidemic? Zoonoses and Public Health, 65(7), 815-821.

Reichling, J., Schnitzler, P., Suschke, U., & Saller, R. (2009). Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties–an overview. Complementary Medicine Research, 16(2), 79-90.

Reis - Gomes, A. D. (2012). Estudo retrospectivo das micoses e micotoxicoses animais na região sul do Brasil. Tese Mestrado, 96.

Rodrigues, A. M., De Hoog, G., Zhang, Y., & De Camargo, Z. P. (2014). Emerging sporotrichosis is driven by clonal and recombinant Sporothrix species. Emerging Microbes & Infections, 3(1), 1-10.

Rondón Medina, K. J., & Centy Rodríguez, M. F. (2022). Actividad Antiinflamatoria de la Crema elaborada con el Extracto Etanólico de Olea europaea L. (Olivo) en Rattus norvegicus var. Albinus con edema plantar inducido.

Salama, Z. A., Aboul-Enein, A. M., Gaafar, A. A., Asker, M. S., Aly, H. F., & Ahmed, H. A. (2020). In-vitro antioxidant, antimicrobial and anticancer activities of banana leaves (Musa acuminata) and olive leaves (Olea europaea L.) as by-products. Research Journal of Pharmacy and Technology, 13(2), 687-696.

Romero, C., Medina, E., Vargas, J., Brenes, M., & De Castro, A. (2007). In vitro activity of olive oil polyphenols against Helicobacter pylori. Journal of Agricultural and Food Chemistry, 55(3), 680-686.

Şahin, S., Samli, R., Tan, A. S. B., Barba, F. J., Chemat, F., Cravotto, G., & Lorenzo, J. M. (2017). Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules, 22(7), 1056.

Stopiglia, C. D. O., Magagnin, C. M., Castrillón, M. R., Mendes, S. D. C., Heidrich, D., Valente, P., & Scroferneker, M. L. (2013). Antifungal susceptibilities and identification of species of the Sporothrix schenckii complex isolated in Brazil. Medical Mycology, 52(1), 56-64.

Sudjana, A. N., D’Orazio, C., Ryan, V., Rasool, N., Ng, J., Islam, N., Hammer, K. A. (2009). Antimicrobial activity of commercial Olea europaea (olive) leaf extract. International Journal of Antimicrobial Agents, 33(5), 461-463.

Upadhyay, R. K. (2014). Evaluation of antibacterial and antifungal activities of olive (Olea europaea) essential oil. International Journal of Green Pharmacy (IJGP), 8(3).

Vieira, A. J. H., & Santos, J. I. (2017). Mecanismos de resistência de Candida albicans aos antifúngicos anfotericina B, fluconazol e caspofungina. RBAC, 49(3), 235-9.

Zacchino, S. (2001). Estratégias para a descoberta de novos agentes antifúngicos. Plantas Medicinais sob a Ótica da Química Medicinal Moderna. Chapecó: Ed. Argos, 435-479.

Waller, S. B., Madrid, I. M., Ferraz, V., Picoli, T., Cleff, M. B., de Faria, R. O., de Mello, J. R. B. (2016). Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil. Brazilian Journal of Microbiology, 47, 896-901.

Waller, S. B., Cleff, M. B., Serra, E. F., Silva, A. L., dos Reis Gomes, A., de Mello, J. R. B., Meireles, M. C. A. (2017). Plants from Lamiaceae family as source of antifungal molecules in humane and veterinary medicine. Microbial Pathogenesis, 104, 232-237.

Waterman, E., & Lockwood, B. (2007). Active components and clinical applications of olive oil. Alternative Medicine Review, 12(4).

Downloads

Publicado

27/04/2022

Como Citar

RIPOLL, M. K. .; MARTINS, O. de A. .; WALLER, S. B. .; SILVA, A. L. .; FARIA, R. O. de .; GOMES, A. dos R. .; PICOLI, T.; MEIRELES, M. C. A. .; ACUNHA, T. dos S. .; CHAVES, F. C. .; MELLO, J. R. B. de . Atividade antifúngica in vitro de extratos aquosos do bagaço da Oliveira (Olea europaea L.) frente a isolados fúngicos causadores de candidíase, dermatofitose e esporotricose em humanos e animais. Research, Society and Development, [S. l.], v. 11, n. 6, p. e26111629090, 2022. DOI: 10.33448/rsd-v11i6.29090. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29090. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas