Modificação de bico de impressora 3D para obtenção de suportes para uso em medicina regenerativa

Autores

DOI:

https://doi.org/10.33448/rsd-v11i6.29472

Palavras-chave:

Tecnologia de extrusão por fusão a quente; Tecidos suporte; Medicina regenerativa; Engenharia tecidual; Impressão tridimensional.

Resumo

A utilização de suportes biológicos ou sintéticos para a condução de eventos celulares do processo regenerativo constitui uma das principais estratégias na área da medicina regenerativa. Suportes customizados fabricados por manufatura aditiva provam ser uma ótima solução para este problema. Duas características almejadas que auxiliam na biocompatibilidade dos suportes são a rugosidade da superfície e a característica geométrica da sua topografia, geralmente alcançadas por um processamento químico realizado após a impressão. Esta pesquisa apresenta a proposta de obtenção de um bico de impressora 3D capaz de gerar diretamente uma topografia externa nos filamentos extrudados, eliminando a necessidade de uma etapa adicional de pós-processamento. A morfologia e viabilidade celular sobre suportes impressos pelo método proposto e convencional foram avaliadas em experimentos in vitro e o novo bocal mostrou-se eficiente em gerar filamentos impressos com grau de citocompatibilidade superior aos obtidos por filamentos convencionais.

Referências

Abdal-hay, A., Sheikh, F. A., Gómez-Cerezo, N., Alneairi, A., Luqman, M., Pant, H. R., & Ivanovski, S. (2022). A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. European Polymer Journal, 162, 110892.

Bakhru, H., Bizios, R., Ricci, J. L., & Supronowicz, P. S. (1996). Analysis of osteoblast mineral deposits on three-dimensional, porous, polylactic acid scaffolds. Trans Annu Meet Soc Biomater Int Biomater Symp, 2: 848.

Bartolo, P., Kruth, J. P., Silva, J., Levy, G., Malshe, A., Rajurkar, K., ... & Leu, M. (2012). Biomedical production of implants by additive electro-chemical and physical processes. CIRP annals, 61(2), 635-655.

Carvalho, R. A. D., Rocha Junior, V. V., Carvalho, A. J. F., Araújo, H. S. S. D., Iemma, M. R. C., Trovatti, E., & Amaral, A. C. (2021). Poly-(lactic acid) and fibrin bioactive cellularized scaffold for use in bone regenerative medicine: Proof of concept. Journal of Bioactive and Compatible Polymers, 36(3), 171-184.

Chaubey, A., Ross, K. J., Leadbetter, R. M., & Burg, K. J. (2008). Surface patterning: tool to modulate stem cell differentiation in an adipose system. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84(1), 70-78.

Cheung, H. Y., Lau, K. T., Lu, T. P., & Hui, D. (2007). A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B: Engineering, 38(3), 291-300.

Designtech. (2018). How Fused Deposition Modeling (FDM) Printers Work. https://www.designtechsys.com/articles/working-fdm-3d-printers.

Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature materials, 4(7), 518-524.

Liu, F., Wang, W., Mirihanage, W., Hinduja, S., & Bartolo, P. J. (2018). A plasma-assisted bioextrusion system for tissue engineering. CIRP Annals, 67(1), 229-232.

Lucon, E. (2013). Effect of Electrical Discharge Machining (EDM) on charpy test results from miniaturized steel specimens. Journal of Testing and Evaluation, 41(1), 1-9.

Machado, J. L. M. (2007). Desenvolvimento de Cimento Ósseo de Fosfato de Cálcio como Suporte para Crescimento de Tecidos, 1–161.

Malekian, M., Mostofa, M. G., Park, S. S., & Jun, M. B. G. (2012). Modeling of minimum uncut chip thickness in micro machining of aluminum. Journal of Materials Processing Technology, 212(3), 553-559.

Mason, C., & Dunnill, P. (2012). A brief definition of regenerative medicine. Regen Med [Internet], 3(1):1–5.

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63.

Ponciano, R. C. de O., Costa, A. C. F. de M., Barbosa, R. C., Fook, M. V. L., & Ponciano, J. J. (2021). Scaffolds de quitosana e hidroxiapatita com amoxicilina para reparação óssea. Research, Society and Development, 10(5), e13410514790.

Pawar, R., U Tekale, S., U Shisodia, S., T Totre, J., & J Domb, A. (2014). Biomedical applications of poly (lactic acid). Recent patents on regenerative medicine, 4(1), 40-51.

Sampogna, G., Guraya, S. Y., & Forgione, A. (2015). Regenerative medicine: Historical roots and potential strategies in modern medicine. Journal of Microscopy and Ultrastructure, 3(3), 101-107.

Serra, T., Mateos-Timoneda, M. A., Planell, J. A., & Navarro, M. (2013). 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine. Organogenesis, 9(4), 239-244.

Stratasys. (2018). Tecnologia FDM. http://www.stratasys.com/br/impressoras-3d/technologies/fdm-technology

Turner, N.; Strong, B.R. & Gold, A. S. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal. 20(3), 192-204.

Zhang, H. X., Du, G. H., & Zhang, J. T. (2004). Assay of mitochondrial functions by resazurin in vitro. Acta Pharmacologica Sinica, 25(3), 385-389.

Downloads

Publicado

12/05/2022

Como Citar

MORO, F. H. .; CARVALHO, R. A. de .; BARUD, H. da S. .; AMARAL, A. C.; SILVA, E. J. da . Modificação de bico de impressora 3D para obtenção de suportes para uso em medicina regenerativa. Research, Society and Development, [S. l.], v. 11, n. 6, p. e58111629472, 2022. DOI: 10.33448/rsd-v11i6.29472. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29472. Acesso em: 30 jun. 2024.

Edição

Seção

Engenharias