Inserção de nanocargas de prata em superfície de titânio anodizado

Autores

DOI:

https://doi.org/10.33448/rsd-v11i7.29690

Palavras-chave:

Titânio; Anodização; Nanocarga de prata.

Resumo

O titânio quando mantido em temperatura e atmosfera ambiente, produz uma fina e aderente camada de óxido (TiO2) tornando resistente à corrosão. Por essa característica, a anodização do titânio vem sendo estudada para aplicações biomédicas. Apesar de possuírem excelente biocompatibilidade, as próteses de titânio podem gerar infecções associadas ao implante. Estudos mostram que aliando nanocargas de prata (AgNPs) ao titânio, a atividade antimicrobiana do material é ampliada, o que reduz a taxa de infecções. O objetivo do trabalho foi identificar o processo mais adequado para incorporação de nanocargas de prata em titânio anodizado. Para tanto, amostras de titânio foram (i) anodizadas em ácido cítrico contendo nitrato de prata (AgNO3), (ii) anodizadas em ácido cítrico e posteriormente imersas em solução de extrato vegetal + AgNO3 e (iii) anodizadas em H2SO4 + H2O2 e seladas em solução contendo extrato vegetal + AgNO3. Análises morfológicas por Microscopia Eletrônica de Varredura (MEV) e análises químicas semiquantitativas por Espectroscopia De Energia Dispersiva (EDS) foram realizadas para verificar a eficácia de incorporação das nanocargas de cada método. Os resultados mostraram que é possível incorporar AgNPs ao óxido de titânio por meio do processo (i) anodização em ácido cítrico + AgNO3 e (iii) anodização em H2SO4 + H2O2 e selagem em solução contendo extrato vegetal + AgNO3. Além disso, testes de polarização potenciodinâmica e de citotoxicidade foram realizados somente nas amostras do processo (iii) e mostraram que a incorporação de prata melhora o desempenho anticorrosivo do titânio e favorece o efeito antimicrobiano da superfície em bactérias.

Referências

Acosta, T., Mendieta, Nunez, A., Cajero, J. M., Castanho, V. M. (2012). Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. International Journal of Nanomedicine, 20212(7), p. 4777.

Akhavan, O. (2009). Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. Journal of Colloid And Interface Science, 336(1), p. 117-124.

Asoh, H., Nakatani, M., Ono, S. (2016). Fabrication of thick nanoporous oxide films on stainless steel via DC anodization and subsequent biofunctionalization. Surface and Coatings Technology, 307, p. 441-451.

Barbosa, L. V., Marçal, L., Nassar, E. J., Calefi, P. S., Vicente, M. A., Trujillano, R., Rives, V., Gil, A., Korili, S. A., Ciuffi, K. J. (2015). Kaolinite-titanium oxide nanocomposites prepared via sol-gel as heterogeneous photocatalysts for dyes degradation. Catalysis Today, 246, p. 133-142.

Barranco, V., Escudero, M. L., García-Alonso, M. C. (2011). Influence of the microstructure and topography on the barrier properties of oxide scales generated on blasted Ti6Al4V surfaces. Acta Biomaterialia, 7(6), p. 2716-2725.

Dalmau, A., Pina, V. G., Devesa, F., Amigó, V., Muñoz, A. I. (2013). Influence of fabrication process on electrochemical and surface properties of Ti–6Al–4V alloy for medical applications. Electrochimica Acta, 95, p. 102-111.

Di, H., Qiaoxia, L., Yujie, Z., Jingxuan, L., yan, W., Yinchun, H., Xiaojie, L., Song, C., Weiyi, C. (2020). Ag nanoparticles incorporated tannic acid/nanoapatite composite coating on Ti implant surfaces for enhancement of antibacterial and antioxidant properties. Surface and Coatings Technology, 399, p. 126169.

Flores, C. Y., Diaz, C., Rubert, A., Benítez, G. A., Moreno, M. S., Mele, M. A. F. L. de, Salvarezza, R. C. Schilardi, P. L., Vericat, C. (2010). Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. Journal of Colloid And Interface Science, 350(2), p. 402-408.

Fuhr, L. T., Moura, A. B. D., Carone, C. L. P., Morisso, F. P., Scheffel, L. F., Kunst, S. R., Ferreira, J. Z., Oliveira, C. T. (2020). Colored anodizing of titanium with pyroligneous solutions of black wattle. Matéria (Rio de Janeiro), 25(2), p. 104-122.

Gaur, D., Sharma, S., Ghoshal, S. K. (2021). Modified structures, optical and photovoltaic characteristics of low energy ions beam irradiated TiO2/TiO2-Graphene thin films as electron transport layer in perovskite solar cell. Materials Today: Proceedings, 43(6), p. 3826-3832.

Geetha, M., Singh, A. K., Asokamani, R., Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), p. 397-425.

Hsueh, Y. H., Cheng, C. Y., Chien, H. W, Huang, X. H, Huang, C. W., Wu, C. H., Chen, S. T., Ou, S. F. (2020). Synergistic effects of collagen and silver on the deposition characteristics, antibacterial ability, and cytocompatibility of a collagen/silver coating on titanium. Journal of Alloys and Compounds, 830, p. 15-25.

Indira, K., Mudali, U. K., Nishimura, T., Rajendran, N. (2015). A Review on TiO2 Nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of Bio-and Tribo-Corrosion, 1(4), p. 127-134.

Kokubo, T., Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27, p. 2907–2915.

Mazare, A., Anghel, A., Surdu-Bob, C., Totea, G., Demetrescu, I., Ionita, D. (2018). Silver doped diamond-like carbon antibacterial and corrosion resistance coatings on titanium. Thin Solid Films, [657, p. 16-23.

Mittal, A. K., Chisti, Y., Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), p. 346-356.

Ono, S., Saito, M., Asoh, H. (2004). Self-Ordering of Anodic Porous Alumina Induced by Local Current Concentration: burning. Electrochemical and Solid-State Letters, 7(7), p. 21-24.

Pornnumpa, N., Jariyaboon, M. (2019). Antibacterial and corrosion resistance properties of anodized AA6061 aluminum alloy. Engineering Journal, 23(4), p. 171-181.

Rahman, Z. U., Haider, W., Pompa, L., Deen, K. M. (2016). Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys. Materials Science and Engineering: C, 58, p. 160-168.

Ramires, I., Guastaldi, A. C. (2002). Estudo do biomaterial Ti-6Al-4V empregando-se técnicas eletroquímicas e XPS. Química Nova, 25(1), p. 10-14.

Roberge, P. R. (1999). Handbook of corrosion engineering. McGraw-Hill Education, 1130 p.

Saurabh, A., Meghana, C. M., Singh, P. K., Verma, P. C. (2022). Titanium-based materials: synthesis, properties, and applications. Materials Today: Proceedings, 56 (1), p. 412-419.

Shan, D., Tao, B., Fang, C., Shao, H., Xie, L., Feng, J., Yan, G. (2021). Anodization of titanium in reduced graphene oxide-citric acid electrolyte. Results in Physics, 24, p. 104060.

Van Hengel, I. A. J., Putra, N. E., Tierolf, M. W. A. M., Minneboo, M., Fluit, A. C., Fratila-Apachitei, L. E., Apachitei, I., Zadpoor, A. A. (2020). Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria. Acta Biomaterialia, 107, p. 325-337.

Wan, J., Yan, X., Ding, J., Wang, M., Hu, K. (2009). Self-organized highly ordered TiO2 nanotubes in organic aqueous system. Materials Characterization, 60, p.1534–1540.

Wolynec, S. (2013). Técnicas Eletroquímicas em Corrosão. São Paulo: Edusp, 176 p.

Xing, J., Xia, Z., Hu, J., Zhang, Y., Zhong, L. (2013) Time dependence of growth and crystallization of anodic titanium oxide films in potentiostatic mode. Corrosion Science, 75, p. 212-219.

Young, L. (1961). Anodic Oxid Films. Londres: Academic Press, 337 p.

Downloads

Publicado

18/05/2022

Como Citar

FERNANDES, M.; KUNST, S. R.; MORISSO, F. D. P. .; CARÚS, L. A. .; ZIULKOSKI, A. L.; OLIVEIRA, C. T. . Inserção de nanocargas de prata em superfície de titânio anodizado. Research, Society and Development, [S. l.], v. 11, n. 7, p. e13711729690, 2022. DOI: 10.33448/rsd-v11i7.29690. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29690. Acesso em: 25 nov. 2024.

Edição

Seção

Engenharias