Placas de isolamento térmico e acústico a partir de biomassa de microalgas, poli-β-hidroxibutirato e lã de vidro

Autores

DOI:

https://doi.org/10.33448/rsd-v9i4.2995

Palavras-chave:

Spirulina; condutividade térmica; coeficiente de absorção sonora; coeficiente de redução sonora; construções sustentáveis.

Resumo

Entre as muitas funções que um material de construção precisa ter, destacam-se suas funções de isolamento. Este tipo de material atua diminuindo a condução de calor/som no ambiente. Nesse contexto, os bio-isolantes têm recebido uma atenção crescente devido ao seu desempenho e ao uso de materiais de isolamento sustentáveis/naturais. Este estudo foi realizado para avaliar o desempenho térmico e acústico de placas de base biológica fabricadas a partir da biomassa de Spirulina, poli-β-hidroxibutirato bacteriano (PHB) e lã de vidro. As placas foram fabricadas sob compressão aquecida em diferentes proporções: 33,33% de lã de vidro, 33,33% de PHB e 33,33% de biomassa de Spirulina (Placa A); 20% de lã de vidro, 40% de PHB e 40% de Spirulina (Placa B); 40% de lã de vidro, 40% de PHB e 20% de Spirulina (Placa C); e 40% de lã de vidro, 20% de PHB e 40% de Spirulina (Placa D). As placas A e B apresentaram menor condutividade térmica (0,09 W m-1 K-1) em comparação aos materiais isolantes tradicionais, como gesso puro (0,44 W m-1 K-1) e tijolo isolante de caulim (0,08-0,19 W m-1 K-1). A placa D apresentou o maior coeficiente de absorção sonora de ~ 1600 Hz em comparação com outros isoladores de base biológica na mesma frequência, como fibra não tecida à base de polipropileno e fibra de folha de chá com a mesma espessura. Para o coeficiente de redução de ruído, a placa B apresentou melhores resultados que o concreto. Portanto, as placas A e B são adequadas como isolantes térmicos, enquanto as placas B e D são adequadas como isolantes acústicos. Para aplicação simultânea como isolante térmico e acústico, a placa B é a melhor escolha entre todas as placas.

Referências

Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40, 353–366. https://dx.doi.org/10.1016/j.buildenv.2004.05.013

American Society for Testing and Materials D7984-16. (2016). Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument. ASTM International, West Conshohocken, PA, www.astm.org.

American Society for Testing and Materials - E1050. (2012). Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones, and a Digital Frequency Analysis System. ASTM International, West Conshohocken, PA, www.astm.org.

Arenas, J. P., & Crocker, M. J. (2010). Recent trends in porous sound-absorbing materials. Sound & vibration, 44, 12-18.

Ashour, T., Wieland, H., Georg, H., Bockisch, F., & Wu, W. (2010). The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings. Materials and Design, 31, 4676–4685. https://doi.org/10.1016/j.matdes.2010.05.026

Binici, H., Aksogan, O., & Demirhan, C. (2016). Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustainable Cities and Society, 20, 17-26. https://doi.org/10.1016/j.scs.2015.09.004

Chabriac, P. A., Gourdon, E., Gle, P., Fabbri, A., & Lenormand, H. (2016). Agricultural by-products for building insulation: Acoustical characterization and modeling to predict micro-strutural parameters. Construction and Building Materials, 112, 158-167. https://doi.org/10.1016/j.conbuildmat.2016.02.162

Chikhi, M., Agoudjil, B., Boudenne, A., & Gherabli, A. (2013). Experimental investigation of new biocomposite with low cost for thermal insulation. Energy and Buildings, 66, 267-273. https://doi.org/10.1016/j.enbuild.2013.07.019

Costa, J. A. V., & Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102, 2-9. https://doi.org/10.1016/j.biortech.2010.06.014

Ersoy, S., & Kuçuk, H. (2009). Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Applied Acoustics, 70, 215-220. https://doi.org/10.1016/j.apacoust.2007.12.005

Evon, P., Vandenbossche, V., Pontalier, P., & Rigal, L. (2014). New thermal insulation fiberboards from cake generated during biorefinary of sunflower whole plant in a twin-screw extruder. Industrial Crops and Products, 52, 354-362. https://doi.org/10.1016/j.indcrop.2013.10.049

Hirata, S., Ohta, M., & Honma, Y. (2001). Hardness distribution on wood surface. Journal of Wood Science, 1, 1-7. https://doi.org/10.1007/BF00776637

International Organization for Standardization 10534-2. (1998). Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part 2: Transfer-function method.

Khan, A., Mohamed, M., Halo, N., & Benkreira, H. (2017). Acoustical properties of novel sound absorbers made from recycled granulates. Applied Acoustics, 127, 80-88. https://doi.org/10.1016/j.apacoust.2017.05.035

Khedari, J., Pratinthong, N., & Hirunlabh, J. (2001). New lightweight composite construction materials with low thermal conductivity. Cement & Concrete Composites, 23, 65–70. https://doi.org/10.1016/S0958-9465(00)00072-X

Liu, L. F., Li, H. Q., Lazzaretto, A., Manente, G., Tong, C. Y., Liu, Q. B., & Li, N. P. (2017). The development history and prospects of biomass-based insulation materials for buildings. Renewable and Sustainable Energy Reviews, 69, 912-932. https://doi.org/10.1016/j.rser.2016.11.140

McCabe, W., Smith, J., Harriott, P. (2004). Unit Operations of Chemical Engineering. New York, McGraw Hill Education.

Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal fired thermoelectric power plant for the biofixation of carbon dioxide. Energy Conversion Management, 48 (7), 2169-2173. https://doi.org/10.1016/j.enconman.2006.12.011

Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43, 1732-1739. https://doi.org/10.1016/j.enbuild.2011.03.015

Papadopoulos, A. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37, 77-86. https://doi.org/10.1016/j.enbuild.2004.05.006

Sharma, L., Mallick, N. (2005). Accumulation of poly-b-hydroxybutyrate in Nostoc muscorum: regulation by pH, light– dark cycles, N and P status and carbon sources. Bioresources Technologies, 96, 1304-1310. https://doi.org/10.1016/j.biortech.2004.10.009

Tabor, D. (2000). The hardness of metals. New York, Oxford University Press Inc.

Väntsi, O., & Kärki, T. (2015). Environmental assessment of recycled mineral wool and polypropylene utilized in wood polymer composites. Resources, Conservation and Recycling, 104, 38-48. https://doi.org/10.1016/j.resconrec.2015.09.009

Volf, M., Divis, J., & Havlík, F. (2015). Thermal, moisture and biological behavior of natural insulating materials. Energy Procedia. 78, 1599-1604. https://doi.org/10.1016/j.egypro.2015.11.219

Yang, H. S., Kim, D. J., Lee, Y. K., Kim, H. J., Jeon, J. Y., & Kang, C. W. (2004). Possibility of using waste tire composites reinforced with rice straw as construction materials. Bioresource Technology, 95, 61-65. https://doi.org/10.1016/j.biortech.2004.02.002

Yang, H. S., Kim, D. J., Lee, & Kim, H. J. (2003). Rice straw-wood particle composite for sound absorbing wooden construction materials. Bioresource Technology, 86, 117-121. https://doi.org/10.1016/S0960-8524(02)00163-3

Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Waste Management, 31, 670–679. https://doi.org/10.1016/j.wasman.2010.10.030

Zarrouk, C. (1966). Contribuition a letude dune cyanophycee: Influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima geitler. PhD Thesis, University of Paris.

Downloads

Publicado

21/03/2020

Como Citar

RIBEIRO, E. S.; TAVELLA, R. A.; SANTOS, G. S. dos; FIGUEIRA, F. da S.; COSTA, J. A. V. Placas de isolamento térmico e acústico a partir de biomassa de microalgas, poli-β-hidroxibutirato e lã de vidro. Research, Society and Development, [S. l.], v. 9, n. 4, p. e143942995, 2020. DOI: 10.33448/rsd-v9i4.2995. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2995. Acesso em: 2 jul. 2024.

Edição

Seção

Engenharias