Efetividade do fluxo de trabalho digital: resultados preliminares

Autores

DOI:

https://doi.org/10.33448/rsd-v11i8.30598

Palavras-chave:

Prótese implanto-fixa; Scanner intraoral; CAD CAM.

Resumo

Objetivo: O objetivo deste estudo observacional foi avaliar a eficácia do fluxo de trabalho digital completo na fabricação de próteses parafusadas implanto-suportadas em relação ao seu assentamento passivo. Materiais e Métodos: Este estudo apresenta um resultado preliminar, parte do projeto aprovado pelo Comitê de Ética do Centro Universitário José Campos Andrade (UNIANDRADE) sob o número 3.367.320. A amostra foi composta por 9 pacientes que apresentavam áreas edêntulas parciais com 2 a 3 implantes cicatrizados, selecionados no ambulatório da Faculdade Ilapeo conforme os critérios de inclusão. Todos foram reabilitados com próteses parciais múltiplas parafusadas implanto suportadas. Os pilares foram selecionados de acordo com as características dos tecidos peri implantares. As infraestruturas foram fresadas em cobalto-cromo e revestidas com cerâmica. O assentamento passivo das infraestruturas foi utilizado como critério de avaliação da eficácia do fluxo de trabalho digital completo através dos critérios do Teste de Sheffield. Modelos impressos foram utilizados para aplicação das cerâmicas de revestimento. Resultados: Este resultado preliminar apresenta 14 próteses fixas implanto suportadas tipo parafuso, instaladas em nove pacientes. Todas as infraestruturas apresentaram resultado positivo de acordo com os critérios de avaliação. Conclusões: Com base nos resultados preliminares apresentados, parece justo concluir que o fluxo de trabalho digital completo mostra a eficácia necessária para a obtenção de próteses parciais múltiplas implanto suportadas do tipo parafusadas revestidas por cerâmica, pois foi observada uma prevalência de próteses que apresentaram assentamento passivo.

Referências

Abduo, J. (2014). Fit of CAD/CAM implant frameworks: a comprehensive review. The Journal of oral implantology, 40(6), 758-766. https://doi.org/10.1563/AAID-JOI-D-12-00117

Abduo, J., Bennani, V., Waddell, N., Lyons, K., & Swain, M. (2010). Assessing the fit of implant fixed prostheses: a critical review. The International journal of oral & maxillofacial implants, 25(3), 506-515.

Abduo, J., Lyons, K., Bennani, V., Waddell, N., & Swain, M. (2011). Fit of screw-retained. The International journal of prosthodontics, 24(3), 207-220.

Abduo, J., & Swain, M. (2012). Influence of vertical misfit of titanium and zirconia frameworks on peri-implant strain. The International journal of oral & maxillofacial implants, 27(3), 529-536.

Aragón, M. L., Pontes, L. F., Bichara, L. M., Flores-Mir, C., & Normando, D. (2016). Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. European journal of orthodontics, 38(4), 429-434. https://doi.org/10.1093/ejo/cjw033

Berejuk, H. M., Shimizu, R. H., Sartori, I. A. M., Valgas, L., & Tiossi, R. (2014). Vertical microgap and passivity of fit of three-unit implant-supported frameworks fabricated using different techniques. The International journal of oral & maxillofacial implants, 29(5), 1064-1070. https://doi.org/10.11607/jomi.3421

Brånemark, P. I. (1983). Osseointegration and its experimental background. The Journal of prosthetic dentistry, 50(3), 399-410. https://doi.org/10.1016/s0022-3913(83)80101-2

Cesar, P. F., Marinho, R. M. M., & Souza, R. O. A. (2018). Fraturas em cerâmica: Qual a melhor resposta. PróteseNews, 5(3), 268-272.

Fluegge, T., Att, W., Metzger, M., & Nelson, K. (2017). A Novel Method to Evaluate Precision of Optical Implant Impressions with Commercial Scan Bodies - An Experimental Approach. Journal of prosthodontics: official journal of the American College of Prosthodontists, 26(1), 34-41. https://doi.org/10.1111/jopr.12362

Fontoura, D. C., Barros, V. M., Magalhães, C. S., Vaz, R. R., & Moreira, A. N. (2018). Evaluation of Vertical Misfit of CAD/CAM Implant-Supported Titanium and Zirconia Frameworks. The International journal of oral & maxillofacial implants, 33(5), 1027-1032. https://doi.org/10.11607/jomi.6320

Gjelvold, B., Chrcanovic, B. R., Korduner, E. K., Collin-Bagewitz, I., & Kisch, J. (2016). Intraoral digital impression technique compared to conventional impression technique. A randomized clinical trial. Journal of prosthodontics: official journal of the American College of Prosthodontists, 25(4), 282-287. https://doi.org/10.1111/jopr.12410

Jemt, T. (1991). Failures and complications in 391 consecutively inserted fixed prostheses supported by Brånemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup. The International journal of oral & maxillofacial implants, 6(3), 270-276.

Jemt, T., Bäck, T., & Petersson, A. (1999). Precision of CNC-milled titanium frameworks for implant treatment in the edentulous jaw. The International journal of prosthodontics, 12(3), 209-215.

Jemt, T., & Lekholm, U. (1998). Measurements of bone and frame-work deformations induced by misfit of implant superstructures. A pilot study in rabbits. Clinical oral implants research, 9(4), 272-280. https://doi.org/10.1034/j.1600-0501.1998.090408.x

Jemt, T., & Lie, A. (1995). Accuracy of implant-supported prostheses in the edentulous jaw: analysis of precision of fit between cast gold-alloy frameworks and master casts by means of a three-dimensional photogrammetric technique. Clinical oral implants research, 6(3), 172-180. https://doi.org/10.1034/j.1600-0501.1995.060306.x

Joda, T., Ferrari, M., Gallucci, G. O., Wittneben, J. G., & Brägger, U. (2017). Digital technology in fixed implant prosthodontics. Periodontology 2000, 73(1), 178-192. https://doi.org/10.1111/prd.12164

Joda, T., Zarone, F., & Ferrari, M. (2017). The complete digital workflow in fixed prosthodontics: a systematic review. BMC Oral Health, 17(1), 124. https://doi.org/10.1186/s12903-017-0415-0

Joda, T., & Brägger, U. (2015). Time-Efficiency Analysis Comparing Digital and Conventional Workflows for Implant Crowns: A Prospective Clinical Crossover Trial. The International journal of oral & maxillofacial implants, 30(5), 1047-1053. https://doi.org/10.11607/jomi.3963

Kapos, T., & Evans, C. (2014). CAD/CAM technology for implant abutments, crowns, and superstructures. The International Journal of Oral & Maxillofacial Implants, 29 Suppl, 117-136. https://doi.org/10.11607/jomi.2014suppl.g2.3

Karl, M., Graef, F., Schubinski, P., & Taylor, T. (2012). Effect of intraoral scanning on the passivity of fit of implant-supported fixed dental prostheses. Quintessence international (Berlin, Germany: 1985), 43(7), 555-562.

Mangano, F., Gandolfi, A., Luongo, G., & Logozzo, S. (2017). Intraoral scanners in dentistry: a review of the current literature. BMC oral health, 17(1), 149. https://doi.org/10.1186/s12903-017-0442-x

Miyazaki, T., Hotta, Y., Kunii, J., Kuriyama, S., & Tamaki, Y. (2009). A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dental Materials Journal, 28(1), 44-56. https://doi.org/10.4012/dmj.28.44

Moreno, A., Giménez, B., Özcan, M., & Pradíes, G. (2013). A clinical protocol for intraoral digital impression of screw-retained CAD/CAM framework on multiple implants based on wavefront sampling technology. Implant dentistry, 22(4), 320-325. https://doi.org/10.1097/ID.0b013e3182980fe9

Oteiza-Galdón, B., Martínez-González, A., & Escuder, Á. V. (2020). Analysis of fit on implants of chrome cobalt versus titanium frameworks made by cad/cam milling. Journal of clinical and experimental dentistry, 12(10), e951-e957. https://doi.org/10.4317/jced.57817

Prasad, S., & Monaco Jr, E. A. (2009). Repairing an implant titanium milled framework using laser welding technology: a clinical report. The Journal of prosthetic dentistry, 101(4), 221-225. https://doi.org/10.1016/S0022-3913(09)00037-7

Rodrigues, M. A., Luthi, L. F., Takahashi, J. M., Nobilo, M. A., & Henriques, G. E. (2014). Strain gauges's analysis on implant-retained prosthesis' cast accuracy. Indian journal of dental research: official publication of Indian Society for Dental Research, 25(5), 635-640. https://doi.org/10.4103/0970-9290.147113

Russo, L. L., Caradonna, G., Biancardino, M., De Lillo, A., Troiano, G., & Guida, L. (2019). Digital versus conventional workflow for the fabrication of multiunit fixed prostheses: A systematic review and meta-analysis of vertical marginal fit in controlled in vitro studies. The Journal of prosthetic dentistry, 122(5), 435-440. https://doi.org/10.1016/j.prosdent.2018.12.001

Rutkunas, V., Larsson, C., Vult von Steyern, P., Mangano, F., & Gedrimiene, A. (2020). Clinical and laboratory passive fit assessment of implant-supported zirconia restorations fabricated using conventional and digital workflow. Clinical implant dentistry and related research, 22(2), 237-245. https://doi.org/10.1111/cid.12885

Samra, A. P. B., Morais, E. C. C., Mazur, R. F., & Vieira, S. R. (2016). CAD/CAM in dentistry – a critical review. Revista Odonto Ciência, 31(3), 140-144. https://doi.org/10.15448/1980-6523.2016.3.21002

Sartori, I. A., Ribeiro, R. F., Francischone, C. E., & Mattos, M. de (2004). In vitro comparative analysis of the fit of gold alloy or commercially pure titanium implant-supported prostheses before and after electroerosion. The Journal of prosthetic dentistry, 92(2), 132-138. https://doi.org/10.1016/j.prosdent.2004.04.001

Sawase, T., & Kuroshima, S. (2020). The current clinical relevancy of intraoral scanners in implant dentistry. Dental materials journal, 39(1), 57-61. https://doi.org/10.4012/dmj.2019-285

Schwarz, M. S. (2000). Mechanical complications of dental implants. Clinical oral implants research, 11(Suppl 1), 156-158. https://doi.org/10.1034/j.1600-

2000.011s1156.x

Siqueira, R., Galli, M., Chen, Z., Mendonça, G., Meirelles, L., Wang, H. L., & Chan, H. L. (2021). Intraoral scanning reduces procedure time and improves patient comfort in fixed prosthodontics and implant dentistry: a systematic review. Clinical oral investigations, 25(12), 6517-6531. https://doi.org/10.1007/s00784-021-04157-3

Skalak, R. (1983). Biomechanical considerations in osseointegrated prostheses. The Journal of prosthetic dentistry, 49(6), 843-848. https://doi.org/10.1016/0022-3913(83)90361-x

Song, S., Zheng, Z., Yang, L-Y., & Gao, X. (2019). Effect of materials and superstructure designs on the passive fit of implant-supported fixed prostheses. [Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi]. West China journal of stomatology, 37(1), 37-41. https://doi.org/10.7518/hxkq.2019.01.007

Souza, R. O. A. (2017). Novos Materiais Restauradores Livres de Metal. PróteseNews, 4(5), 554-564.

Spazzin, A. O., Bacchi, A., Trevisani, A., Farina, A. P., & Santos, M. B. (2016). Fit Analysis of Different Framework Fabrication Techniques for Implant-Supported Partial Prostheses. The International journal of prosthodontics, 29(4), 351-353. https://doi.org/10.11607/ijp.4542

Spitznagel, F. A., Boldt, J., & Gierthmuehlen, P. C. (2018). CAD/CAM ceramic restorative materials for natural teeth. Journal of dental research, 97(10), 1082-1091. https://doi.org/10.1177/0022034518779759

Standardization IOf. (1994). ISO 5725-1:1994. Accuracy (Trueness and Precision) of Measurement Methods and Results – Part 1: General Principles and Definitions: International Organization for Standardization Geneva, Switzerland. https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en

Stawarczyk, B., Frevert, K., Ender, A., Roos, M., Sener, B., & Wimmer, T. (2016). Comparison of four monolithic zirconia materials with conventional ones: contrast ratio, grain size, four-point flexural strength and two-body wear. Journal of the mechanical behavior of biomedical materials, 59, 128-138. https://doi.org/10.1016/j.jmbbm.2015.11.040

Stawarczyk, B., Keul, C., Eichberger, M., Figge, D., Edelhoff, D., & Lümkemann, N. (2017a). Three generations of zirconia: from veneered to monolithic. Part I. Quintessence international (Berlin, Germany: 1985), 48(5), 369-380. https://doi.org/10.3290/j.qi.a38057

Stawarczyk, B., Keul, C., Eichberger, M., Figge, D., Edelhoff, D., & Lümkemann, N. (2017b). Three generations of zirconia: from veneered to monolithic. Part II. Quintessence international (Berlin, Germany: 1985), 48(6), 441-450. https://doi.org/10.3290/j.qi.a38157

Strub, J. R., Rekow, E. D., & Witkowski, S. (2006). Computer-aided design and fabrication of dental restorations: current systems and future possibilities. Journal of the American Dental Association (1939), 137(9), 1289-1296. https://doi.org/10.14219/jada.archive.2006.0389

Taşın, S., Turp, I., Bozdağ, E., Sünbüloğlu, E., & Üşümez, A. (2019). Evaluation of strain distribution on an edentulous mandible generated by cobalt-chromium metal alloy fixed complete dentures fabricated with different techniques: An in vitro study. The Journal of prosthetic dentistry, 122(1), 47-53. https://doi.org/10.1016/j.prosdent.2018.10.034

Tian, Y., Chen, C., Xu, X., Wang, J., Hou, X., Li, K., Lu, X., Shi, H., Lee, E. S., & Jiang, H. B. (2021). A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning (Article ID 9950131). https://doi.org/10.1155/2021/9950131

Tonin, B. S. H., Peixoto, R. F., Fu, J., Freitas, B. N., Mattos, M. G. C., & Macedo, A. P. (2021). Evaluation of misfit and stress distribution in implant-retained prosthesis obtained by different methods. Brazilian Dental Journal, 32(5), 67-76. https://doi.org/10.1590/0103-6440202104453

Uribarri, A., Bilbao-Uriarte, E., Segurola, A., Ugarte, D., & Verdugo, F. (2019). Marginal and internal fit of CAD/CAM frameworks in multiple implant-supported restorations: Scanning and milling error analysis. Clinical implant dentistry and related research, 21(5), 1062-1072. https://doi.org/10.1111/cid.12839

Yilmaz, B., Alshahrani, F. A., Kale, E., & Johnston, W. M. (2018). Effect of feldspathic porcelain layering on the marginal fit of zirconia and titanium complete-arch fixed implant-supported frameworks. The Journal of prosthetic dentistry, 120(1), 71-78. https://doi.org/10.1016/j.prosdent.2017.11.003

Yuzbasioglu, E., Kurt, H., Turunc, R., & Bilir, H. (2014). Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health, 14, 10. https://doi.org/10.1186/1472-6831-14-10

Zervas, P. J., Papazoglou, E., Beck, F. M., & Carr, A. B. (1999). Distortion of three-unit implant frameworks during casting, soldering, and simulated porcelain firings. Journal of prosthodontics: official journal of the American College of Prosthodontists, 8(3), 171-179. https://doi.org/10.1111/j.1532-849x.1999.tb00032.x

Downloads

Publicado

11/06/2022

Como Citar

TRACZINSKI, A.; MANFRINATO, J. P. L. .; TASSI JUNIOR, P. A. .; SARTORI, I. A. de M. . Efetividade do fluxo de trabalho digital: resultados preliminares . Research, Society and Development, [S. l.], v. 11, n. 8, p. e9911830598, 2022. DOI: 10.33448/rsd-v11i8.30598. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30598. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências da Saúde