Potencial terapêutico de fármacos inibidores seletivos da recaptação de serotonina e anti-inflamatórios inibidores da COX-2 para epilepsia

Autores

DOI:

https://doi.org/10.33448/rsd-v11i8.31319

Palavras-chave:

Epilepsia; Anti-inflamatório; Inibidor seletivo da recaptação da serotonina; Serotonina; Quinurenina.

Resumo

A epilepsia é uma doença neurológica causada por distúrbios na propagação elétrica entre os neurônios, e que cursa com grandes prejuízos na vida dos pacientes, podendo até mesmo levar à morte. Há diversas propostas para entender seu funcionamento bioquímico, de modo que os tratamentos farmacológicos atuais se baseiam na interrupção da condução elétrica ou modulação de neurotransmissores, como o fenobarbital e a fenitoína. Desse modo, o presente trabalho objetiva analisar o potencial terapêutico que medicamentos como os anti-inflamatórios inibidores de COX-2 e os inibidores seletivos da recaptação de serotonina (ISRS) no controle da epilepsia. Assim, foi realizada uma revisão narrativa da literatura usando a base de dados “PubMed” a fim de encontrar as bases teóricas e trabalhos experimentais que demonstram o mecanismo de tais medicamentos. O trabalho conclui que os ISRSs e inibidores da COX-2 possuem diversos mecanismos que teoricamente podem tratar a epilepsia, isso se deve ao estabelecimento de maior concentração do neurotransmissor serotonina, bem como redução da formação do ácido quinolínico, o qual é um potencial agente neurotóxico que contribui para a epileptogênese.

Referências

Afridi, R., & Suk, K. (2021). Neuroinflammatory Basis of Depression: Learning From Experimental Models. Front Cell Neurosci., 15, e691067.

Alsaegh, H., Eweis, H., Kamal, F., & Alrafiah, A. (2021). Celecoxib Decrease Seizures Susceptibility in a Rat Model of Inflammation by Inhibiting HMGB1 Translocation. Pharmaceuticals (Basel)., 14(4), 380.

Bagdy, G., Kecskemeti, V., Riba, P., & Jakus, R. (2007). Serotonin and epilepsy. J Neurochem., 100(4), 857-73.

Bombardi, C. (2012). Neuronal localization of 5-HT2A receptor immunoreactivity in the rat hippocampal region. Brain Research Bulletin, 87 (2), 259–273.

Bonnycastle, D. D., Giarman, N. J., & Paasonen, M. K. (1957). Anticonvulsant compounds and 5-hydroxy-tryptamine in rat brain. British Journal of Pharmacology and Chemotherapy, 12 (2), 228–31.

Ciranna, L. (2006) Serotonin as a Modulator of Glutamate- and GABA-Mediated Neurotransmission: Implications in Physiological Functions and in Pathology. Current Neuropharmacology, 4 (2), 101–14.

DeGiorgio, C. M., Curtis, A., Carapetian, A., Hovsepian, D., Krishnadasan, A., & Markovic, C. (2020). Why are epilepsy mortality rates rising in the United States? A population-based multiple cause-of-death study. BMJ Open., 10, e035767.

Deidda, G., Crunelli, V., & Giovanni, G. D. (2021). 5-HT/GABA interaction in epilepsy. Prog Brain Res, 259, 265-286.

Deng, N., Hu, J., Hong, Y., Ding, Y., Xiong, Y., Wu, Z., & Xie, W. (2021). Indoleamine-2,3-Dioxygenase 1 Deficiency Suppresses Seizures in Epilepsy. Front Cell Neurosci., 15, e638854.

Deurwaerdère, P. D., & Giovanni, G. D. (2020). Serotonin in Health and Disease. Int J Mol Sci., 21 (10), 3500.

Deurwaerdere, P. D., & Giovanni, G. D. (2021). 5-HT interaction with other neurotransmitters: An overview. Prog Brain Res, 259, 1-5.

Faingold, C. L., Kommajosyula, S. P., Long, X., Plath, K., & Randall, M. (2014). Serotonin and sudden death: differential effects of serotonergic drugs on seizure-induced respiratory arrest in DBA/1 mice. Epilepsy Behav, 37, 198-203.

Hernandez, J. E., Williams, P. A., & Dudek, F. E. (2002). Effects of Fluoxetine and TFMPP on Spontaneous Seizures in Rats with Pilocarpine-induced Epilepsy. Epilepsia, 43(11), 1337-1345.

Kanner, A. M. (2016). Most antidepressant drugs are safe for patients with epilepsy at therapeutic doses: A review of the evidence. Epilepsy & Behavior, 61, 282–286.

Klein, C., Patte-Mensah, C., Taleb, O., Bourguignon, J., Schmitt, M., Bihel, F., Maitre, M., & Mensah-Nyagan, A. G. (2013). The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology, 70, 254–260.

Kommajosyula, S. P.; & Faingold, C. L. (2019). Neural activity in the periaqueductal gray and other specific subcortical structures is enhanced when a selective serotonin reuptake inhibitor selectively prevents seizure-induced sudden death in the DBA/1 mouse model of sudden unexpected death in epilepsy. Epilepsia, 60 (6), 1221-1233.

Li, Q. H., Nakadate, K., Tanaka-Nakadate, S., Nakatsuka, D., Cui, Y., & Watanabe, Y. (2003). Unique expression patterns of 5-HT2A and 5-HT2C receptors in the rat brain during postnatal development: Western blot and immunohistochemical analyses. The Journal of Comparative Neurology, 469 (1), 128–140.

Lugo-Huitrón, R., Muñiz, P. U., Pineda, B., Pedraza-Chaverrí, J., Ríos, C., & Cruz, V. P. (2013). Quinolinic Acid: An Endogenous Neurotoxin with Multiple Targets. Oxid Med Cell Longev., 2013, e104024.

Maranhão, M.V., Gomes, E. A., & Carvalho, P. E. (2011). Epilepsia e Anestesia. Rev. Bras. Anestesiol., 61(2).

Mattson, M. P. (2019). Excitotoxicity. Handbook of Stress Series, 3, 125-134.

Merlet, I., Ryvlin, P., Costes, N., Dufournel, D., Isnard, J., Faillenot, I., Ostrowsky K., Lavenne, K., Bars, D. L., & Mauguière, F. (2004). Statistical parametric mapping of 5-HT1A receptor binding in temporal lobe epilepsy with hippocampal ictal onset on intracranial EEG. NeuroImage, 22 (2), 886–96.

Meschaks, A., Lindstrom, P., Halldin, C., Farde, L., & Savic, I. (2005). Regional Reductions in Serotonin 1A Receptor Binding in Juvenile Myoclonic Epilepsy. Archives of Neurology, 62 (6).

Oekelen, D. V., Megens, A., Meert, T., Luyten, W. H., & Leysen, J. E. (2003). Functional study of rat 5-HT2A receptors using antisense oligonucleotides. Journal of Neurochemistry, 85 (5), 1087–100.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Methodology of scientific research. [e-Book]. Santa Maria City. UAB / NTE / UFSM Editors. Accessed on: May, 1st, 2022. Available https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Przegalinski, E., Baran, L., & Siwanowicz, J. (1994). Role of 5-Hydroxytryptamine Receptor Subtypes in the 1-[3-(Trifluoromethyl)Phenyl] Piperazine-Induced Increase in Threshold for Maximal Electroconvulsions in Mice. Epilepsia, 35 (4), 889–894.

Rodríguez, J. J., Noristani, H. N., Hoover, W. B., Linley, S. B., & Vertes, R. P. (2011). Serotonergic projections and serotonin receptor expression in the reticular nucleus of the thalamus in the rat. Synapse, 65 (9), 919–28.

Santana, N. (2004). Expression of Serotonin1A and Serotonin2A Receptors in Pyramidal and GABAergic Neurons of the Rat Prefrontal Cortex. Cerebral Cortex, 14 (10), 1100–1009.

Shneker, B. F., & Fountain, N. B. (2003). Epilepsy. Dis Mon, 49 (7), 426-478.

Sills, G. J., & Rogawski, M. A. (2020). Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 168, e107966.

Silva, A. V., & Cabral, F. R. (2008). Ictogenesis, epileptogenesis and mechanism of action of the drugs used for prevent and treat epilepsy. J. epilepsy clin. neurophysiol., 14 (2).

Singh, T., & Goel, R. K. (2017). Managing epilepsy-associated depression: Serotonin enhancers or serotonin producers?. Epilepsy & Behavior, 66, 93–99.

Song, T., Li, D., Huang, S., Yang, L., Wang, X., Jiang, Y., & Liu, Y. (2016).Effects of cyclooxygenase-2 selective inhibitor celecoxib on the expression of major vault protein in rats with status epilepticus. Chinese Journal of Contemporary Pediatrics, 18(5), 440–445.

Southam, E., Kirkby, D., Higgins, G. A., & Hagan, R. M. (1998). Lamotrigine inhibits monoamine uptake in vitro and modulates 5-hydroxytryptamine uptake in rats. European Journal of Pharmacology, 358 (1), 19–24.

Stean, T. O., Atkins, A. R., Heidbreder, C. A., Quinn, L. P., Trail, B. K., & Upton, N. (2005). Postsynaptic 5-HT1B receptors modulate electroshock-induced generalised seizures in rats. British Journal of Pharmacology, 144 (5), 628–635.

Tupal, S., & Faingold, C. L. (2019). Fenfluramine, a serotonin-releasing drug, prevents seizure-induced respiratory arrest and is anticonvulsant in the DBA/1 mouse model of SUDEP. Epilepsia, 60 (3), 485-494.

Wang, R., & Reddy, P. H. (2018). Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis., 57(4), 1041–1048.

World Health Organization (WHO). (2022). Epilepsy. https://www.who.int/news-room/fact-sheets/detail/epilepsy#

Yan, Q. S., Jobe, P. C., & Dailey, J. W. (1994). Evidence that a serotonergic mechanism is involved in the anticonvulsant effect of fluoxetine in genetically epilepsy-prone rats. European Journal of Pharmacology, 252 (1), 105–112.

Downloads

Publicado

29/06/2022

Como Citar

CARVALHO, M. dos S. do N.; MORAES, R. R. de; TRINDADE FILHO, E. M. . Potencial terapêutico de fármacos inibidores seletivos da recaptação de serotonina e anti-inflamatórios inibidores da COX-2 para epilepsia . Research, Society and Development, [S. l.], v. 11, n. 8, p. e55411831319, 2022. DOI: 10.33448/rsd-v11i8.31319. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31319. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde