Efeitos do Treinamento Autógeno sobre a variabilidade da frequência cardíaca na perspectiva dos índices não lineares

Autores

DOI:

https://doi.org/10.33448/rsd-v11i9.31718

Palavras-chave:

Treinamento autógeno; Relaxamento; Determinação da frequência cardíaca; Dinâmica não linear.

Resumo

Objetivo: O presente estudo pretendeu analisar os efeitos de uma técnica de relaxamento denominada treinamento autógeno, na variabilidade da frequência cardíaca não linear, com a hipótese de que o relaxamento em questão é capaz de promover maior sinergismo entre o sistema nervoso simpático e o parassimpático, evitando assim altos níveis de estresse e complicações futuras. Métodos: Foi realizado um estudo clínico controlado, não randomizado, aberto e transversal, com 19 participantes que realizaram uma única sessão de treinamento autógeno. Resultados: Os resultados mostram que ambos os grupos (experimental e placebo) tiveram valor de p<0,05 e às vezes marginalmente significativo. Essa consequência instiga a seguinte questão: o treinamento autógeno proporciona um estado de relaxamento apenas em razão do efeito placebo? Conclusão: De acordo com o estudo, conclui-se que durante o treinamento autógeno não houve aumento na resposta caótica, além de não haver melhora no sinergismo entre o sistema nervoso simpático e o parassimpático.

Biografia do Autor

Carlos Bandeira de Mello Monteiro, Universidade de São Paulo

Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação (PATER) da Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (EACH-USP). Rua Arlindo Béttio, 1000 - Ermelino Matarazzo, São Paulo, Brazil, CEP: 03828-000.

Faculdade de Medicina, Universidade de São Paulo (USP). Rua Cipotânea 51, Cidade Universitária, São Paulo – SP, São Paulo, Brazil, CEP: 05360 -160.

Referências

American Heart Association. (2021). Silent ischemia and ischemic heart disease. https://www.heart.org/en/health-topics/heart-attack/about-heart-attacks/silent-ischemia-and-ischemic-heart-disease

Annegarn J., Spruit M. A., Savelberg H. H. C. M., Willems P. J. B., Wouters E. F. M., Schols A. M. W. J., & Meijer K. (2010). Stride time fluctuations during the six minute walk test in COPD patients. Rehabilitation: mobility, exercise, and sports: 4th International State-of-the-Art Congress. Amsterdam: IOS Press; 2010. p. 149-51. (Assistive technology research series; vol. 26), 10.3233/978-1-60750-080-3-149.

Barnes, R. H. (1980). Mind/body integration: essential readings in biofeedback. Psychosomatics. 21(11): 954-5.10.1016/S0033-3182(80)73593-4.

Bernardo, A. F. B., Vanderlei, L. C. M., & Garner, D. M. (2014). HRV Analysis: A Clinical and Diagnostic Tool in Chronic Obstructive Pulmonary Disease. International Scholarly Research Notices, 2014, 1–6.10.1155/2014/673232.

Bryce, R. M., & Sprague, K. B. (2012). Revisiting detrended fluctuation analysis. Scientific Reports, 2(1):10.1038/srep00315.

Câmara, F. P., (2006). Treinamento Autógeno Simplificado: Um método de Terapia Integral. The International Journal of Psychiatry, 7 (11), 27-28.

Castiglioni, P. (2010). What is wrong in Katz’s method? Comments on: “A note on fractal dimensions of biomedical waveforms.” Computers in Biology and Medicine, 40(11-12), 950–952. 10.1016/j.compbiomed.2010.

Day, B., Evers, A., & Hack, D. (2020). Multipath Suppression for Continuous Wave Radar via Slepian Sequences. IEEE Transactions on Signal Processing, 1–1. 10.1109/tsp.2020.2964199.

DeCS: Descritores em Ciências da Saúde [Health Sciences Descriptors], (2017 May 18). Autogenic training. https://decs.bvsalud.org/ths/resource/?id=1332&filter=ths_termall&q=autogenic-training.

De Leon-Lomeli, R., Murguia, J. S., Chouvarda, I., Mendez, M. O., Gonzalez-Galvan, E., Alba, A., & Parrino, L. (2014). Relation between heartbeat fluctuations and cyclic alternating pattern during sleep in insomnia patients. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.10.1109/embc.2014.6944067.

De Souza, N. M., Vanderlei, L. C. M., & Garner, D. M. (2014). Risk evaluation of diabetes mellitus by relation of chaotic globals to HRV. Complexity, 20(3), 84–92. 10.1002/cplx.21508.

Dirac, P. A. M. (1939). A new notation for quantum mechanics. Mathematical Proceedings of the Cambridge Philosophical Society, 35(03), 416. 10.1017/s0305004100021162.

Donaldson, G. C., Seemungal, T. A. R., Hurst, J. R., & Wedzicha, J. A. (2012). Detrended fluctuation analysis of peak expiratory flow and exacerbation frequency in COPD. European Respiratory Journal, 40(5), 1123–1129.10.1183/09031936.00180811.

Dos Santos, R. J. V. (1997). Generalization of Shannon’s theorem for Tsallis entropy. Journal of Mathematical Physics, 38(8), 4104–4107.10.1063/1.532107.

European Society of Cardiology; North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043-65:10.1161/01.CIR.93.5.1043.

Fioranelli, M., Bottaccioli, A. G., Bottaccioli, F., Bianchi, M., Rovesti, M., & Roccia, M. G. (2018). Stress and Inflammation in Coronary Artery Disease: A Review Psychoneuroendocrineimmunology-Based. Frontiers in Immunology, 9.10.3389/fimmu.2018.02031.

Garner, D. M., Bernardo, A. F. B., & Vanderlei, L. C. M. (2021). HRV analysis: unpredictability of approximate entropy in chronic obstructive pulmonary disease. Series Cardiol Res. 3(1):1-10.

Garner, D. M., de Souza, N. M., & Vanderlei, L. C. M. (2017). Risk assessment of diabetes mellitus by chaotic globals to heart rate variability via six power spectra. Rom J Diabetes Nutr Metab Dis. 2017;24(3):227-36. 10.1515/rjdnmd-2017-0028.

Garner, D. M., de Souza, N. M., & Vanderlei, L. C. M. (2018). Heart rate variability analysis: Higuchi and Katz’s fractal dimensions in subjects with type 1 diabetes mellitus. Rom J Diabetes Nutr Metab Dis. 2018;25(3):289-95.10.2478/rjdnmd-2018-0034.

Garner, D. M., de Souza, N. M., & Vanderlei, L. C. M. (2020). Unreliability of approximate entropy to locate optimal complexity in diabetes mellitus via heart rate variability. Series Endo Diab Met. 2(2):32-40.

Garner, D. M., & Ling, B. W.-K. (2014). Measuring and locating zones of chaos and irregularity. Journal of Systems Science and Complexity, 27(3), 494–506.10.1007/s11424-014-2197-7.

Garner, D. M., Vanderlei, F. M., Valenti, V. E., & Vanderlei, L. C. M. (2019). Non-linear regulation of cardiac autonomic modulation in obese youths: interpolation of ultra-short time series. Cardiology in the Young, 29(09), 1196–1201.10.1017/s1047951119001951.

Ghil, M. (1997). The SSA-MTM toolkit: applications to analysis and prediction of time series. Proc SPIE Int Soc Opt Eng. 1997; 3165: 216-30.10.1117/12.279594.

Gould, S. H., (1995). Variational methods for eigenvalue problems: an introduction to the methods of Rayleigh, Ritz, Weinstein, and Aronszajn. Dover Publications,10, 192.

Hall, J. E., (2016). Guyton and Hall textbook of medical physiology. Elsevier,13, 2896.

Hastings, M. B., González, I., Kallin, A. B., & Melko, R. G. (2010). Measuring Renyi Entanglement Entropy in Quantum Monte Carlo Simulations. Physical Review Letters, 104(15).10.1103/physrevlett.104.15.

Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena, 31(2), 277–283.10.1016/0167-2789(88)90081-4.

Karasik, R., Sapir, N., Ashkenazy, Y., Ivanov, P. C., Dvir, I., Lavie, P., & Havlin, S. (2002). Correlation differences in heartbeat fluctuations during rest and exercise. Physical Review E, 66(6).10.1103/physreve.66.062902.

Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145–156.10.1016/0010-4825(88)90041-8.

Khoa, T. Q. D., Ha, V. Q., & Toi, V. V. (2012). Higuchi Fractal Properties of Onset Epilepsy Electroencephalogram. Computational and Mathematical Methods in Medicine, 2012, 1–6.10.1155/2012/461426.

Kivimäki, M., & Steptoe, A. (2017). Effects of stress on the development and progression of cardiovascular disease. Nature Reviews Cardiology, 15(4), 215–229.10.1038/nrcardio.2017.189.

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4.10.3389/fpsyg.2013.00863.

Lanatà, A., Greco, A., Ciardelli, M., Uvelli, A., Fratini, E., Manzoni, D., & Sebastiani, L. (2021). Linear and non linear measures of pupil size as a function of hypnotizability. Scientific Reports, 11(1). 10.1038/s41598-021-84756-y.

Lenzi, E. K., Mendes, R. S., & da Silva, L. R. (2000). Statistical mechanics based on Renyi entropy. Physica A: Statistical Mechanics and Its Applications, 280(3-4), 337–345. 10.1016/s0378-4371(00)00007-8.

Liao, C.-M., Hsieh, N.-H., & Chio, C.-P. (2011). Fluctuation analysis-based risk assessment for respiratory virus activity and air pollution associated asthma incidence. Science of The Total Environment, 409(18), 3325–3333. 10.1016/j.scitotenv.2011.0.

Mariz, A. M. (1992). On the irreversible nature of the Tsallis and Renyi entropies. Physics Letters A, 165(5-6), 409–411. 10.1016/0375-9601(92)90339-n.

Molnar, M., & Skinner, J. (1993). Correlation dimension changes of the EEG during the wakefulness-sleep cycle. International Journal of Psychophysiology, 14(2), 138. 10.1016/0167-8760(93)90209-8.

Ozamiz-Etxebarria, N., Santa María, M. D., Munitis, A. E., & Gorrotxategi, M. P. (2020). Reduction of COVID-19 Anxiety Levels Through Relaxation Techniques: A Study Carried Out in Northern Spain on a Sample of Young University Students. Frontiers in Psychology, 11. 10.3389/fpsyg.2020.02038.

Peng, C. ‐K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 82–87. 10.1063/1.166141.

Pimentel, R. M. M., Ferreira, C., Valenti, V., Garner, D. M., Macedo, H., Oliveira, A. S. B., & de Abreu, L. C. (2021). Complexity Measures of Heart-Rate Variability in Amyotrophic Lateral Sclerosis with Alternative Pulmonary Capacities. Entropy, 23(2), 159. 10.3390/e23020159.

Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297–2301.10.1073/pnas.88.6.2297.

Pincus, S. (1995). Approximate entropy (ApEn) as a complexity measure. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 110–117.10.1063/1.166092.

Pinelis I. (2002). L’Hospital type rules for monotonicity, with applications. J Inequal Pure Appl Math. 3(1):5.

Plastino, A. R., & Plastino, A. (1993). Stellar polytropes and Tsallis’ entropy. Physics Letters A, 174(5-6), 384–386. 10.1016/0375-9601(93)90195-6.

Ramirez-Garcia, M. P., Leclerc-Loiselle, J., Genest, C., Lussier, R., & Dehghan, G. (2020). Effectiveness of autogenic training on psychological well-being and quality of life in adults living with chronic physical health problems: a protocol for a systematic review of RCT. Systematic Reviews, 9(1). 10.1186/s13643-020-01336-3.

Richman, J. S., Lake, D. E., & Moorman, J. R. (2004). Sample Entropy. Numerical Computer Methods, Part E, 172–184. 10.1016/s0076-6879(04)84011-4.

Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049. 10.1152/ajpheart.2000.278.

Rossi, R. C., Vanderlei, F. M., Bernardo, A. F., Souza, N. M. de, Goncalves, A. C. C. R., Ramos, E. M. C., & Vanderlei, L. C. M. (2013). Effect of Pursed-Lip Breathing in Patients With COPD: Linear and Nonlinear Analysis of Cardiac Autonomic Modulation. COPD: Journal of Chronic Obstructive Pulmonary Disease, 11(1), 39–45. 10.3109/15412555.2013.8255.

Sandor, P. (1982). Técnicas de relaxamento. São Paulo, 4, 113.

Sbissa, P. P. M. (2010). Efeito da meditação mindfulness sobre a variabilidade da frequência cardíaca. Florianópolis: Universidade Federal de Santa Catarina.

Schulz, K. F., Altman, D. G., & Moher, D. (2010). CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ, 340(mar23 1), c332–c332. 10.1136/bmj.c332.

Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health, 5. 10.3389/fpubh.2017.00258.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. 10.1002/j.1538-7305.1948.tb01338.x.

Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3.10.1145/584091.584093.

Silva, L. E. V., & Murta Jr., L. O. (2012). Evaluation of physiologic complexity in time series using generalized sample entropy and surrogate data analysis. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(4), 043105. 10.1063/1.4758815.

Skinner, J. E., Carpeggiani, C., Landisman, C. E., & Fulton, K. W. (1991). Correlation dimension of heartbeat intervals is reduced in conscious pigs by myocardial ischemia. Circulation Research, 68(4), 966–976. 10.1161/01.res.68.4.966.

Slepian, D. (1978). Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete Case. Bell System Technical Journal, 57(5), 1371–1430. 10.1002/j.1538-7305.1978.tb02104.x.

Sousa, F. H., Valenti, V. E., Pereira, L. C., Bueno, R. R., Prates, S., Akimoto, A. N., & de Abreu, L. C. (2020). Avocado (Persea americana) pulp improves cardiovascular and autonomic recovery following submaximal running: a crossover, randomized, double-blind and placebo-controlled trial. Scientific Reports, 10(1).10.1038/s41598-020-67577-3.

Stetter, F., & Kupper, S. (2002). Autogenic Training: A Meta-Analysis of Clinical Outcome Studies. Applied Psychophysiology and Biofeedback, 27(1), 45–98. 10.1023/a:1014576505223.

Stoco-Oliveira, M. C., Ricci-Vitor, A. L., Vanzella, L. M., Valente, H. B., Silva, V. E. S., André, L. B., de Carvalho, A. C., Garner, D. M., & Vanderlei, L. C. M. (2021). Parkinson’s disease effect on autonomic modulation: an analysis using geometric indices. Arq Neuropsiquiatr. 2021;79(2):114-21. 10.1590/0004-282X-anp-2020-0088.

Takakura, I. T. (2007). Variabilidade da frequência cardíaca no domínio do caos como preditora de morbimortalidade em pacientes submetidos à cirurgia de revascularização do miocárdio [dissertação]. São José do Rio Preto: Faculdade de Medicina de São José do Rio Preto.

Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV – Heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. 10.1016/j.cmpb.2013.07.024.

Taylor, A. E. (1952). L’Hospital’s Rule. The American Mathematical Monthly, 59(1), 20–24. 10.1080/00029890.1952.1198.

Valencia, J. F., Vallverdu, M., Rivero, I., Voss, A., de Luna, A. B., Porta, A., & Caminal, P. (2014). Symbolic dynamics to discriminate healthy and ischaemic dilated cardiomyopathy populations: an application to the variability of heart period and QT interval. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2034), 20140092–20140092. 10.1098/rsta.2014.0092.

Vanderlei, F. M., Vanderlei, L. C. M., & Garner, D. M. (2014). Chaotic global parameters correlation with heart rate variability in obese children. Journal of Human Growth and Development, 24(1), 24. 10.7322/jhgd.72041.

Vanderlei, F., Vanderlei, L. C. M., de Abreu, L. C., & Garner, D. M. (2015). Entropic analysis of HRV in obese children. Int Arch Med. 2015; 8:200. 10.3823/1799.

Vanderlei, L. C. M., Pastre, C. M., Hoshi, R. A., Carvalho, T. D. de, & Godoy, M. F. de. (2009). Noções básicas de variabilidade da frequência cardíaca e sua aplicabilidade clínica. Revista Brasileira de Cirurgia Cardiovascular, 24(2), 205–217. 10.1590/s0102-76382009000200018.

Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1-4), 95–126. 10.1016/0167-2789(92)90103-t.

Wajnsztejn, R., De Carvalho, T. D., Garner, D. M., Vanderlei, L. C. M., Godoy, M. F., Raimundo, R. D., & De Abreu, L. C. (2015). Heart rate variability analysis by chaotic global techniques in children with attention deficit hyperactivity disorder. Complexity, 21(6), 412–419.10.1002/cplx.21700.

World Health Organization (WHO). (2021 December 9). The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

Yusuf, S., Hawken, S., Ôunpuu, S., Dans, T., Avezum, A., Lanas, F., … Lisheng, L. (2004). Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. The Lancet, 364(9438), 937–952. 10.1016/s0140-6736(04)17018-9.

Życzkowski, K. (2003). Rényi Extrapolation of Shannon Entropy. Open Systems & Information Dynamics (OSID), 10(03), 297–310. 10.1023/a:1025128024427.

Downloads

Publicado

09/07/2022

Como Citar

SILVA, V. Y. H. da .; MONTEIRO, C. B. de M. .; FERREIRA, C.; VALENTI, V. E.; GARNER, D. M.; VALENZUELA, E. de J.; DIAS, R. M. .; VIDIGAL, G. de P.; SILVA, T. D. da. Efeitos do Treinamento Autógeno sobre a variabilidade da frequência cardíaca na perspectiva dos índices não lineares. Research, Society and Development, [S. l.], v. 11, n. 9, p. e27111931718, 2022. DOI: 10.33448/rsd-v11i9.31718. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31718. Acesso em: 22 nov. 2024.

Edição

Seção

Ciências da Saúde