Fundamentos para fabricação de um medidor de deslocamento para determinação das constantes elásticas da madeira, considerando a sua anisotropia

Autores

DOI:

https://doi.org/10.33448/rsd-v11i9.31910

Palavras-chave:

Medidor de deslocamento portátil; Madeira tropical; Constantes elásticas; Matriz de flexibilidade.

Resumo

O objetivo deste trabalho é o desenvolvimento de um medidor de deslocamento portátil para determinar as constantes elásticas de madeiras brasileiras. As constantes elásticas que dão origem à matriz de flexibilidade foram determinadas através do ensaio de compressão em corpos de prova confeccionados com a orientação das fibras em seis direções: radial, tangencial, longitudinal, longitudinal-radial, longitudinal-tangencial e radial-tangencial. As espécies utilizadas foram: Dinizia excels (angelim vermelho), Apuleia leiocarpa (garapa) e Peltogyne discolor (roxinho). Com a finalidade de diminuir custo e tempo gasto, na colagem de extensômetros elétricos, foi desenvolvido um medidor de deslocamento, com exatidão suficiente para determinar as deformações em todas as direções das fibras e que possibilita a reutilização, do medidor de deslocamento, em outros ensaios de compressão. Utilizou-se uma tira de aço em forma de arco, na qual foram colados quatro extensômetros elétricos, sendo dois na parte superior e outros dois na parte inferior. Para obter maior sensibilidade na flexão e eliminar a influência da temperatura na deformação dos extensômetros elétricos, estes foram configurados em um circuito em ponte completa de Wheatstone, e logo conectados a um sistema de aquisição de dados. Os resultados permitiram concluir que os medidores de deslocamento foram eficientes e eficazes para determinar as deformações durante o ensaio de compressão e consequentemente para determinar todos os componentes da matriz de flexibilidade.

Biografia do Autor

Edgar Valdimiro Mantilla Carrasco, Universidade Federal de Minas Gerais

Departamento de Tecnologia do Design, da Arquitetura e do Urbanismo, Professor Adunto.

Departamento de Engenharia de estruturas, Prof. Titular, aposentado

Referências

Alves, R. C. (2015). Determinação das constantes elásticas da madeira considerando a sua ortotropia. Tese de Doutorado, Universidade Federal de Minas Gerais, Brasil.

Ando, K., Mizutani, M., Taniguchi, Y. & Yamamoto, H. (2013). Time dependence of Poisson’s effect in wood III: asymmetry of three-dimensional viscoelastic compliance matrix of Japanese cypress. Journal of Wood Science, 59:290–298. 10.1007/s10086-015-1477-8.

Associação Brasileira de Normas Técnicas (1997). Projeto de estruturas de madeira. NBR 7190.

Ballarin, A. W., & Nogueira, M. (2003). Caracterização elástica da madeira de Eucalyptus citriodora. Cerne, 9(1), 69-83.

Bindzi, I., & Samson, M. (1995). New formula for influence of spiral grain on bending stiffness of wooden beams. Journal of structural engineering, 121(11), 1541-52. 10.1061/(ASCE)0733-9445(1995)121:11(1541).

Blomberg. J., & Persson, P. (2007). Swelling pressure of semi-isostatically densified wood under different mechanical restraints. Wood Science and Technology, 41, 401–415. 10.1007/s00226-006-0118-1.

Bodig, J., & Jayne, Ba. (1993). Mechanics of wood and wood composites. Krieger Publ. Comp. Malabar.

Bucur, V. (2006). Acoustics of wood. (2a. ed.), CRC Press, 399p.

Cabrero, J.M., Heiduschke, A., & Haller, P. (2010). Analytical assessment of the load-carrying capacity of axially loaded wooden reinforced tubes. Composite Structures, 92, 2955–2965. 10.1016/j.compstruct.2010.05.007.

Carrasco, E. V. M. (1989). Resistência, elasticidade e distribuição de tensões nas vigas retas de madeira laminada colada. Tese de Doutorado, Universidade de São Paulo, Brasil.

Chang, C. W., Hsu, F. L., Chang, F. C., & Huang, Y. S. (2021). Measuring elastic constants of wood through static bending using a strain gauge. European Journal of Wood and Wood Products, 80, 611–620. 10.1007/s00107-021-01771-6.

Diaz, C. A., Afrifah, K. A., Jin, S., & Matuana, L. M. (2011). Estimation of modulus of elasticity of plastics and wood plastic composites using a Taber stiffness tester. Composites Science and Technology, 71, 67–70. 10.1016/j.compscitech.2010.10.007.

Garrido, N. (2004). Caracterização do comportamento ao corte da madeira através do ensaio offaxis, Dissertação de Mestrado, Universidade de Trás os Montes e Alto Douro, Vila Real, Portugal.

Gómez-Royuela, J. L., Majano-Majano, A., Lara-Bocanegra, A., & Reynolds, T. P.S. (2021). Determination of the elastic constants of thermally modified beech by ultrasound and static tests coupled with 3D digital image correlation. Construction and Building Materials, 302, 124270. 10.1016/j.conbuildmat.2021.124270.

Gonçalves, R., & Trinca, A. T. (2014). Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Science and Technology, 48, 269–287. 10.1007/s00226-013-0598-8.

IPT (2013). Sistema de Informações de Madeiras Brasileiras. Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, (Relatório No 27 078).

Jakiela, S. Bratasz, L., & Kozłowski, R. (2008). Numerical modelling of moisture movement and related stress field in lime wood subjected to changing climate conditions. Wood Science and Technology, 42, 21-37. 10.1007/s00226-007-0138-5.

Keunecke, D., Hering, S., & Niemz, P. (2008). Three-dimensional elastic behaviour of common yew and Norway spruce. Wood Science and Technology, 42, 633–647. 10.1007/s00226-008-0192-7.

Lekhnitskii, S. G. (1981). Theory of Elasticity of an Anisotropic Body. MirPublishers, Moscou.

LG Steel (2015). Em Aço de Médio e Alto carbono - F - 436 - aço 1045 / temp. 38/45 hrc. http://lgsteel.com.br/arruela-lisa-em-aco-medio-alto-carbonolg-436-aco.htm.

Lima, I. L., Ranzini, M., Longui, E. L., & Barbosa, J. A. (2021). Wood characterization of Tectona grandis L. F. cultivated in Brazil: a review of the last 30 years. Research, Society and Development, 10(14), e162101421549. 10.33448/rsd-v10i14.21549.

Mascia, N. T., & Lahr, F. A. R. (2006). Remarks on Orthotropic Elastic Models Applied to Wood. Materials Research, 9(3), 301-310. 10.1590/S1516-14392006000300010.

Mascia, N. T., & Nicolas, E. A. (2013). Determination of Poisson s ratios in relation to fiber angle of a tropical wood species. Construction & Building Materials, 41, 691-696. 10.1016/j.conbuildmat.2012.12.014.

Mascia, N. T., & Vanalli, L. (2012). Evaluation of the coefficients of mutual influence of wood through off-axis compression tests. Construction & Building Materials, 30, 522-528. 10.1016/j.conbuildmat.2011.12.048.

Mascia, N.T. (1991). Considerações a respeito da anisotropia na madeira. Tese Doutorado, Universidade de São Paulo, Brasil.

Morais, J. J. (2000). Comportamento Mecânico Não-Linear da Madeira. 2º Seminário de engenharia. Universidade de Trás os Montes e Alto Douro, Vila Real, Portugal.

Naruse, K. (2003). Estimation of shear moduli of wood by quasi-simple shear tests. Journal of Wood Science, 49, 479–484. 10.1007/s10086-003-0515-0.

Nicolas, E. A., Mascia, N. T., & Todeschini, R. (2009). Ensaios uniaxiais e biaxiais para avaliação de critério de resistência (Tsai-Wu) de materiais anisotrópicos para a madeira. Revista Minerva, 6, 107-116.

Ozyhar, T., Hering, S., Sanabria, S. J., & Niemz, P. (2013). Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology, 47, 329–341. 10.1007/s00226-012-0499-2.

Santos, J. O. X., Fernandes, S. C., Freitas, H. S., Barros, R. P., & Barros, L. M. (2020). Avaliação de propriedades físicas e mecânicas de quatro espécies de madeira amazônica para uso na construção civil. Research, Society and Development, 9(12), e44891211379. 10.33448/rsd-v9i12.11379.

Schniewind, A. P., Barrett, J. D. (1972). Wood as a linear orthotropic viscoelastic material. Wood Science and Technology, 6(1), 43–57. 10.1007/BF00351807.

Sebera, V., Tippner, J., Simek, M., Srajer, J., Decky, D., & Klimova, H. (2014). Poisson’s ratio of the MDF in respect to vertical density profile. European Journal of Wood and Wood Products, 72, 407–410. 10.1007/s00107-014-0780-1.

Shamov, I. V. (1965). Long-time study of Poisson’s ratio for polyethylene stressed in the small strains range. Polymer Mechanics, 1(3), 36–38. 10.1007/BF00858800.

Sliker, A. (1972). Measuring Poisson's ratios in wood. Experimental Mechanics, 12(5), 239-242.

Taniguchi, Y., Ando, K., & Yamamoto, H. (2010). Determination of three-dimensional viscoelastic compliance in wood by tensile creep test. Journal of Wood Science, 56: 82–84. 10.1007/s10086-009-1069-6.

Vázquez, C., Gonçalves, R. Bertoldo, C., Baño, V., Vega, A., Crespo, J. & Guaita, M. (2015). Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods. Wood Science and Technology, 49, 607–622. 10.1007/s00226-015-0719-7.

Xin, Z., Zhang, H., Guan, C., Liu, J., Liu, F., Gong, Y., Li, H., & Shen, Y. (2022). Determining elastic constants of full-size cross laminated timber panel supported on four nodes using a vibration method. Construction and Building Materials, 323, 126513. 10.1016/j.conbuildmat.2022.126513.

Downloads

Publicado

10/07/2022

Como Citar

CARRASCO, E. V. M.; ALVES, R. C.; SMITS, M. A.; PIZZOL, V. D.; OLIVEIRA, A. L. C.; MANTILLA, J. N. R. Fundamentos para fabricação de um medidor de deslocamento para determinação das constantes elásticas da madeira, considerando a sua anisotropia. Research, Society and Development, [S. l.], v. 11, n. 9, p. e31711931910, 2022. DOI: 10.33448/rsd-v11i9.31910. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31910. Acesso em: 22 dez. 2024.

Edição

Seção

Engenharias