Condições de processo de dióxido de carbono de alta pressão: comparações e algumas disparidades no processamento de alimentos
DOI:
https://doi.org/10.33448/rsd-v11i12.34068Palavras-chave:
CO2 em fase densa; Estabilização de alimentos; Não-convencional; Frescor.Resumo
Devido a demanda cada vez mais intensa do consumidor por alimentos de alta qualidade, nos últimos anos cada vez mais pesquisas têm sido desenvolvidas para amenizar perdas nutricionais e manter a característica de frescor que muitas vezes são comprometidas pelo tratamento térmico convencional. Dentre as tecnologias emergentes, o dióxido de carbono de alta pressão (HP-CO2) tem mostrado resultados eficientes para estabilização de alimentos. Algumas disparidades a respeito do efeito dos parâmetros de processo no tratamento dos alimentos com HP-CO2 foram observadas na literatura. Dessa forma, neste trabalho, os dados encontrados em um levantamento bibliográfico foram organizados nos cinco tópicos mais discutidos nas obras consultadas: a fase termodinâmica, temperatura, pressão, razão de CO2 e tempo de tratamento. De modo geral, observou-se que enzimas e microrganismos apresentam resistências diferentes aos parâmetros do processo, podendo variar ainda mais com a mudança dos componentes da matriz, do tipo de microrganismo ou da fonte enzimática. Portanto, é possível que os resultados observados em uma determinada matriz alimentar sejam díspares caso o mesmo tratamento seja aplicado em outra matriz diferente.
Referências
Alvarenga, P. D. L., Cavatti, L. S., Valiati, B. S., Machado, B. G., Capucho, L. C, & Domingos, M. M. et al. (2021). Aplicação do ultrassom no processamento de frutas e hortaliças. Brazilian Journal Of Food Technology, 24. doi: 10.1590/1981-6723.27420.
Amaral, G., Silva, E., Cavalcanti, R., Cappato, L., Guimaraes, J., & Alvarenga, V. et al. (2017). Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends In Food Science &Amp; Technology, 64, 94-101. doi: 10.1016/j.tifs.2017.04.004.
Barbosa, J., Puton, B., Fischer, B., Junges, A., Paroul, N., & Steffens, C. et al. (2020) Effect of Supercritical CO2 on Physicochemical Characteristics and D-Value of S. aureus in Raw Salmon. Industrial Biotechnology, 16(6), 368-374. doi: 10.1089/ind.2020.0024.
Benito-Román, Ó., Teresa Sanz, M., Melgosa, R., de Paz, E., Escudero, I., & Beltrán, S. (2019). Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD). The Journal of Supercritical Fluids, 147, 310-321. doi:10.1016/j.supflu.2018.07.026.
Berenhauser, A., Soares, D., Komora, N., De Dea Lindner, J., Schwinden Prudêncio, E., Oliveira, J., & Block, J. (2017). Effect of high-pressure carbon dioxide processing on the inactivation of aerobic mesophilic bacteria and Escherichia coli in human milk. CyTA - Journal of Food, 16(1), 122-126. doi: 10.1080/19476337.2017.1345983.
Bourdoux, S., Zambon, A., Van der Linden, I., Spilimbergo, S., Devlieghere, F., & Rajkovic, A. (2022). Inactivation of foodborne pathogens on leek and alfalfa seeds with supercritical carbon dioxide. The Journal of Supercritical Fluids, 180, 105433. doi:10.1016/j.supflu.2021.105433.
Buszewski, B., Wrona, O., Mayya, R., Zakharenko, A., Kalenik, T., & Golokhvast, K. et al. (2021). The potential application of supercritical CO2 in microbial inactivation of food raw materials and products. Critical Reviews in Food Science and Nutrition, 1-14. doi:10.1080/10408398.2021.1902939.
Casas, J., Valverde, M., Marín-Iniesta, F., & Calvo, L. (2012). Inactivation of Alicyclobacillus acidoterrestris spores by high pressure CO2 in apple cream. International Journal of Food Microbiology, 156(1), 18-24. doi: 10.1016/j.ijfoodmicro.2012.02.015.
Castillo-Zamudio, R., Paniagua-Martínez, I., Ortuño-Cases, C., García-Alvarado, M., Larrea, V., & Benedito, J. (2021). Use of high-power ultrasound combined with supercritical fluids for microbial inactivation in dry-cured ham. Innovative Food Science & Emerging Technologies, 67, 102557. doi: 10.1016/j.ifset.2020.102557.
Ceni, G., Fernandes Silva, M., Valério Jr., C., Cansian, R., Oliveira, J., Dalla Rosa, C., & Mazutti, M. (2016). Continuous inactivation of alkaline phosphatase and Escherichia coli in milk using compressed carbon dioxide as inactivating agent. Journal of CO2 Utilization, 13, 24-28. doi: 10.1016/j.jcou.2015.11.003.
Chen, H., Guan, Y., Wang, A., & Zhong, Q. (2022). Inactivation of Escherichia coli K12 on raw almonds using supercritical carbon dioxide and thyme oil. Food Microbiology, 103, 103955. doi: 10.1016/j.fm.2021.103955.
Debs-Louka, E., Louka, N., Abraham, G., Chabot, V., & Allaf, K. (1999). Effect of Compressed Carbon Dioxide on Microbial Cell Viability. Applied and Environmental Microbiology, 65(2), 626-631. doi: 10.1128/aem.65.2.626-631.1999.
Donato, H., & Donato, M. (2019). Etapas na Condução de uma Revisão Sistemática. Acta Médica Portuguesa, 32(3), 227. doi: 10.20344/amp.11923.
Enomoto, A., Nakamura, K., Nagai, K., Hashimoto, T., & Hakoda, M. (1997). Inactivation of Food Microorganisms by High-pressure Carbon Dioxide Treatment with or without Explosive Decompression. Bioscience, Biotechnology, and Biochemistry, 61(7), 1133-1137. doi: 10.1271/bbb.61.1133.
Fraser D. (1951). Bursting Bacteria by Release of Gas Pressure. Nature, 167(4236), 33-34. doi: 10.1038/167033b0.
Feng, J., Zheng, Y., Zhang, X., Zhou, R., & Ma, M. (2022). Effect of supercritical carbon dioxide on bacterial community, volatile profiles and quality changes during storage of Mongolian cheese. Food Control, 109225.
Ferrentino, G., Barletta, D., Donsì, F., Ferrari, G., & Poletto, M. (2010). Experimental Measurements and Thermodynamic Modeling of CO2 Solubility at High Pressure in Model Apple Juices. Industrial & Engineering Chemistry Research, 49(6), 2992-3000. doi: 10.1021/ie9009974.
Fleury, C., Savoire, R., Harscoat-Schiavo, C., Hadj-Sassi, A., & Subra-Paternault, P. (2018). Optimization of supercritical CO2 process to pasteurize dietary supplement: Influencing factors and CO2 transfer approach. The Journal of Supercritical Fluids, 141, 240-251. doi: 10.1016/j.supflu.2018.01.009.
Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of ultrasound in food science and technology: a perspective. Foods 7: 164.
Garcia-Gonzalez, L., Geeraerd, A., Spilimbergo, S., Elst, K., Van Ginneken, L., & Debevere, J. et al. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, 117(1), 1-28. doi: 10.1016/j.ijfoodmicro.2007.02.018.
Gasperi, F., Aprea, E., Biasioli, F., Carlin, S., Endrizzi, I., Pirretti, G., & Spilimbergo, S. (2009). Effects of supercritical CO2 and N2O pasteurisation on the quality of fresh apple juice. Food Chemistry, 115(1), 129-136. doi: 10.1016/j.foodchem.2008.11.078.
Hossain, M., Nik Ab Rahman, N., Balakrishnan, V., F.M. Alkarkhi, A., Ahmad Rajion, Z., & Ab Kadir, M. (2015). Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology. Waste Management, 38, 462-473. doi: 10.1016/j.wasman.2015.01.003.
Hu, W., Zhou, L., Xu, Z., Zhang, Y., & Liao, X. (2013). Enzyme Inactivation in Food Processing using High Pressure Carbon Dioxide Technology. Critical Reviews in Food Science and Nutrition, 53(2), 145-161. doi: 10.1080/10408398.2010.526258.
Illera, A., Sanz, M., Beltrán, S., & Melgosa, R. (2019). High pressure CO2 solubility in food model solutions and fruit juices. The Journal of Supercritical Fluids, 143, 120-125. doi: 10.1016/j.supflu.2018.07.009.
Illera, A., Sanz, M., Trigueros, E., Beltrán, S., & Melgosa, R. (2018). Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. Journal of Food Engineering, 239, 64-71. doi: 10.1016/j.jfoodeng.2018.06.027.
Iqbal, A., Murtaza, A., Hu, W., Ahmad, I., Ahmed, A., & Xu, X. (2019). Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food and Bioproducts Processing, 117, 170-182. doi: 10.1016/j.fbp.2019.07.006.
Kincal, D., Hill, W., Balaban, M., Portier, K., Wei, C., & Marshall, M. (2006). A Continuous High Pressure Carbon Dioxide System for Microbial Reduction in Orange Juice. Journal of Food Science, 70(5), M249-M254. doi: 10.1111/j.1365-2621.2005.tb09979.x.
Kutlu, N., Pandiselvam, R., Saka, I., Kamiloglu, A., Sahni, P., & Kothakota, A. (2021). Impact of different microwave treatments on food texture. Journal Of Texture Studies. doi: 10.1111/jtxs.12635.
Liao, H., Zhong, K., Hu, X., & Liao, X. (2019). Effect of high pressure carbon dioxide on alkaline phosphatase activity and quality characteristics of raw bovine milk. Innovative Food Science & Emerging Technologies, 52, 457-462. doi: 10.1016/j.ifset.2019.02.005.
Manzocco, L., Plazzotta, S., Spilimbergo, S., & Nicoli, M. (2017). Impact of high-pressure carbon dioxide on polyphenoloxidase activity and stability of fresh apple juice. LWT - Food Science and Technology, 85, 363-371. doi: 10.1016/j.lwt.2016.11.052.
Marszałek, K., Doesburg, P., Starzonek, S., Szczepańska, J., Woźniak, Ł., & Lorenzo, J. et al. (2019). Comparative effect of supercritical carbon dioxide and high pressure processing on structural changes and activity loss of oxidoreductive enzymes. Journal of CO2 Utilization, 29, 46-56. doi: 10.1016/j.jcou.2018.11.007.
Marszałek, K., Krzyżanowska, J., Woźniak, Ł., & Skąpska, S. (2017). Kinetic modelling of polyphenol oxidase, peroxidase, pectin esterase, polygalacturonase, degradation of the main pigments and polyphenols in beetroot juice during high pressure carbon dioxide treatment. LWT - Food Science and Technology, 85, 412-417. doi: 10.1016/j.lwt.2016.11.018.
Martín-Muñoz, D., Tirado, D., & Calvo, L. (2022). Inactivation of Legionella in aqueous media by high-pressure carbon dioxide. The Journal of Supercritical Fluids, 180, 105431. doi: 10.1016/j.supflu.2021.105431.
Melo Silva, J., Rigo, A., Dalmolin, I., Debien, I., Cansian, R., Oliveira, J., & Mazutti, M. (2013). Effect of pressure, depressurization rate and pressure cycling on the inactivation of Escherichia coli by supercritical carbon dioxide. Food Control, 29(1), 76-81. doi: 10.1016/j.foodcont.2012.05.068.
Michelino, F., Zambon, A., Vizzotto, M., Cozzi, S., & Spilimbergo, S. (2018). High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander. Journal of CO2 Utilization, 24, 516-521. doi: 10.1016/j.jcou.2018.02.010.
Murtaza, A., Iqbal, A., Linhu, Z., Liu, Y., Xu, X., Pan, S., & Hu, W. (2019). Effect of high-pressure carbon dioxide on the aggregation and conformational changes of polyphenol oxidase from apple (Malus domestica) juice. Innovative Food Science & Emerging Technologies, 54, 43-50. doi: 10.1016/j.ifset.2019.03.001.
Murtaza, A., Iqbal, A., Marszałek, K., Iqbal, M., Waseem Ali, S., & Xu, X. et al. (2020). Enzymatic, Phyto-, and Physicochemical Evaluation of Apple Juice under High-Pressure Carbon Dioxide and Thermal Processing. Foods, 9(2), 243. doi: 10.3390/foods9020243.
Nakamura, K., Enomoto, A., Fukushima, H., Nagai, K., & Hakoda, M. (1994). Disruption of Microbial Cells by the Flash Discharge of High-pressure Carbon Dioxide. Bioscience, Biotechnology, and Biochemistry, 58(7), 1297-1301. doi: 10.1271/bbb.58.1297.
Paniagua-Martínez, I., Mulet, A., García-Alvarado, M., & Benedito, J. (2018). Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality. Innovative Food Science & Emerging Technologies, 47, 362-370. doi: 10.1016/j.ifset.2018.03.024.
Perrut, M. (2012). Sterilization and virus inactivation by supercritical fluids (a review). The Journal of Supercritical Fluids, 66, 359-371. doi: 10.1016/j.supflu.2011.07.007.
Porębska, I., Sokołowska, B., Skąpska, S., & Rzoska, S. (2017). Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control, 73, 24-30. doi: 10.1016/j.foodcont.2016.06.005.
Rao, L., Bi, X., Zhao, F., Wu, J., Hu, X., & Liao, X. (2015). Effect of High-pressure CO2 Processing on Bacterial Spores. Critical Reviews in Food Science and Nutrition, 56(11), 1808-1825. doi: 10.1080/10408398.2013.787385.
Rao, L., Wang, Y., Chen, F., & Liao, X. (2016). The Synergistic Effect of High Pressure CO2 and Nisin on Inactivation of Bacillus subtilis Spores in Aqueous Solutions. Frontiers in Microbiology, 07. doi: 10.3389/fmicb.2016.01507.
Roobab, U., Shabbir, M., Khan, A., Arshad, R., Bekhit, A., & Zeng, X. et al. (2021). High-pressure treatments for better quality clean-label juices and beverages: Overview and advances. LWT, 149, 111828. doi: 10.1016/j.lwt.2021.111828.
Santos Júnior, L., Heberle, I., Aquino, A., Oliveira, J., Ribeiro, D., Medeiros, J., & Amante, E. (2021). High-pressure supercritical carbon dioxide uses to inactivate Escherichia coli in pumpkin puree. Research, Society and Development, 10(4), e6510413853. doi: 10.33448/rsd-v10i4.13853.
Sehrawat, R., Kaur, B., Nema, P., Tewari, S., & Kumar, L. (2020). Microbial inactivation by high pressure processing: principle, mechanism and factors responsible. Food Science and Biotechnology, 30(1), 19-35. doi: 10.1007/s10068-020-00831-6.
Sikin, A., Walkling-Ribeiro, M., & Rizvi, S. (2016). Synergistic effect of supercritical carbon dioxide and peracetic acid on microbial inactivation in shredded Mozzarella-type cheese and its storage stability at ambient temperature. Food Control, 70, 174-182. doi: 10.1016/j.foodcont.2016.05.050.
Silva, E., Alvarenga, V., Bargas, M., Sant'Ana, A., & Meireles, M. (2018). Non-thermal microbial inactivation by using supercritical carbon dioxide: Synergic effect of process parameters. The Journal of Supercritical Fluids, 139, 97-104. doi: 10.1016/j.supflu.2018.05.013.
Silva, E., Arruda, H., Pastore, G., Meireles, M., & Saldaña, M. (2020b). Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrasonics Sonochemistry, 63, 104942. doi: 10.1016/j.ultsonch.2019.104942.
Silva, E., Meireles, M., & Saldaña, M. (2020a). Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends in Food Science & Technology, 97, 381-390. doi: 10.1016/j.tifs.2020.01.025.
Smigic, N., Djekic, I., Tomic, N., Udovicki, B., & Rajkovic, A. (2019). The potential of foods treated with supercritical carbon dioxide (sc-CO2) as novel foods. British Food Journal, 121(3), 815-834. doi: 10.1108/bfj-03-2018-0168.
Soares, D., Lerin, L., Cansian, R., Oliveira, J., & Mazutti, M. (2013). Inactivation of Listeria monocytogenes using supercritical carbon dioxide in a high-pressure variable-volume reactor. Food Control, 31(2), 514-518. doi: 10.1016/j.foodcont.2012.11.045.
Soares, G., Learmonth, D., Vallejo, M., Davila, S., González, P., Sousa, R., & Oliveira, A. (2019). Supercritical CO2 technology: The next standard sterilization technique?. Materials Science and Engineering: C, 99, 520-540. doi: 10.1016/j.msec.2019.01.121.
Spilimbergo, S., & Bertucco, A. (2003). Non-thermal bacterial inactivation with dense CO2. Biotechnology and Bioengineering, 84(6), 627-638. doi: 10.1002/bit.10783.
Spilimbergo, S., Bertucco, A., Basso, G., & Bertoloni, G. (2005). Determination of extracellular and intracellular pH of Bacillus subtilis suspension under CO2 treatment. Biotechnology and Bioengineering, 92(4), 447-451. doi: 10.1002/bit.20606.
Torabian, G., Bahramian, B., Zambon, A., Spilimbergo, S., Adil, Q., & Schindeler, A. et al. (2018). A hybrid process for increasing the shelf life of elderberry juice. The Journal of Supercritical Fluids, 140, 406-414. doi: 10.1016/j.supflu.2018.07.023.
Valley, G., & Rettger, L. (1927). The influence of carbon dioxide on bacteria. Journal of Bacteriology, 14(2), 101-137. doi: 10.1128/jb.14.2.101-137.1927
Wang, W., Rao, L., Wu, X., Wang, Y., Zhao, L., & Liao, X. (2020). Supercritical Carbon Dioxide Applications in Food Processing. Food Engineering Reviews, 13(3), 570-591. doi: 10.1007/s12393-020-09270-9.
Yang, D., Wang, Y., Zhao, L., Rao, L., & Liao, X. (2022). Extracellular pH decline introduced by high pressure carbon dioxide is a main factor inducing bacteria to enter viable but non-culturable state. Food Research International, 151, 110895. doi: 10.1016/j.foodres.2021.110895.
Yu, T., Niu, L., & Iwahashi, H. (2020). High-Pressure Carbon Dioxide Used for Pasteurization in Food Industry. Food Engineering Reviews, 12(3), 364-380. doi: 10.1007/s12393-020-09240-1.
Zhang, J., Iqbal, A., Murtaza, A., Zhou, X., Xu, X., Pan, S., & Hu, W. (2021). Effect of high pressure carbon dioxide on the browning inhibition of sugar-preserved orange peel. Journal of CO2 Utilization, 46, 101467. doi: 10.1016/j.jcou.2021.101467.
Zhang, Z., Wang, L., Zeng, X., Han, Z., & Brennan, C. (2018). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science & Technology, 54(1), 1-13. doi: 10.1111/ijfs.13903.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Alexia dos Santos Oliveira; Hélia Lucila Malta

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.