Condições de processo de dióxido de carbono de alta pressão: comparações e algumas disparidades no processamento de alimentos

Autores

DOI:

https://doi.org/10.33448/rsd-v11i12.34068

Palavras-chave:

CO2 em fase densa; Estabilização de alimentos; Não-convencional; Frescor.

Resumo

Devido a demanda cada vez mais intensa do consumidor por alimentos de alta qualidade, nos últimos anos cada vez mais pesquisas têm sido desenvolvidas para amenizar perdas nutricionais e manter a característica de frescor que muitas vezes são comprometidas pelo tratamento térmico convencional. Dentre as tecnologias emergentes, o dióxido de carbono de alta pressão (HP-CO2) tem mostrado resultados eficientes para estabilização de alimentos. Algumas disparidades a respeito do efeito dos parâmetros de processo no tratamento dos alimentos com HP-CO2 foram observadas na literatura. Dessa forma, neste trabalho, os dados encontrados em um levantamento bibliográfico foram organizados nos cinco tópicos mais discutidos nas obras consultadas: a fase termodinâmica, temperatura, pressão, razão de CO2 e tempo de tratamento. De modo geral, observou-se que enzimas e microrganismos apresentam resistências diferentes aos parâmetros do processo, podendo variar ainda mais com a mudança dos componentes da matriz, do tipo de microrganismo ou da fonte enzimática. Portanto, é possível que os resultados observados em uma determinada matriz alimentar sejam díspares caso o mesmo tratamento seja aplicado em outra matriz diferente.

Biografia do Autor

Hélia Lucila Malta, Universidade Estadual de Feira de Santana

Departamento de Tecnologia.

Referências

Alvarenga, P. D. L., Cavatti, L. S., Valiati, B. S., Machado, B. G., Capucho, L. C, & Domingos, M. M. et al. (2021). Aplicação do ultrassom no processamento de frutas e hortaliças. Brazilian Journal Of Food Technology, 24. doi: 10.1590/1981-6723.27420.

Amaral, G., Silva, E., Cavalcanti, R., Cappato, L., Guimaraes, J., & Alvarenga, V. et al. (2017). Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends In Food Science &Amp; Technology, 64, 94-101. doi: 10.1016/j.tifs.2017.04.004.

Barbosa, J., Puton, B., Fischer, B., Junges, A., Paroul, N., & Steffens, C. et al. (2020) Effect of Supercritical CO2 on Physicochemical Characteristics and D-Value of S. aureus in Raw Salmon. Industrial Biotechnology, 16(6), 368-374. doi: 10.1089/ind.2020.0024.

Benito-Román, Ó., Teresa Sanz, M., Melgosa, R., de Paz, E., Escudero, I., & Beltrán, S. (2019). Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD). The Journal of Supercritical Fluids, 147, 310-321. doi:10.1016/j.supflu.2018.07.026.

Berenhauser, A., Soares, D., Komora, N., De Dea Lindner, J., Schwinden Prudêncio, E., Oliveira, J., & Block, J. (2017). Effect of high-pressure carbon dioxide processing on the inactivation of aerobic mesophilic bacteria and Escherichia coli in human milk. CyTA - Journal of Food, 16(1), 122-126. doi: 10.1080/19476337.2017.1345983.

Bourdoux, S., Zambon, A., Van der Linden, I., Spilimbergo, S., Devlieghere, F., & Rajkovic, A. (2022). Inactivation of foodborne pathogens on leek and alfalfa seeds with supercritical carbon dioxide. The Journal of Supercritical Fluids, 180, 105433. doi:10.1016/j.supflu.2021.105433.

Buszewski, B., Wrona, O., Mayya, R., Zakharenko, A., Kalenik, T., & Golokhvast, K. et al. (2021). The potential application of supercritical CO2 in microbial inactivation of food raw materials and products. Critical Reviews in Food Science and Nutrition, 1-14. doi:10.1080/10408398.2021.1902939.

Casas, J., Valverde, M., Marín-Iniesta, F., & Calvo, L. (2012). Inactivation of Alicyclobacillus acidoterrestris spores by high pressure CO2 in apple cream. International Journal of Food Microbiology, 156(1), 18-24. doi: 10.1016/j.ijfoodmicro.2012.02.015.

Castillo-Zamudio, R., Paniagua-Martínez, I., Ortuño-Cases, C., García-Alvarado, M., Larrea, V., & Benedito, J. (2021). Use of high-power ultrasound combined with supercritical fluids for microbial inactivation in dry-cured ham. Innovative Food Science & Emerging Technologies, 67, 102557. doi: 10.1016/j.ifset.2020.102557.

Ceni, G., Fernandes Silva, M., Valério Jr., C., Cansian, R., Oliveira, J., Dalla Rosa, C., & Mazutti, M. (2016). Continuous inactivation of alkaline phosphatase and Escherichia coli in milk using compressed carbon dioxide as inactivating agent. Journal of CO2 Utilization, 13, 24-28. doi: 10.1016/j.jcou.2015.11.003.

Chen, H., Guan, Y., Wang, A., & Zhong, Q. (2022). Inactivation of Escherichia coli K12 on raw almonds using supercritical carbon dioxide and thyme oil. Food Microbiology, 103, 103955. doi: 10.1016/j.fm.2021.103955.

Debs-Louka, E., Louka, N., Abraham, G., Chabot, V., & Allaf, K. (1999). Effect of Compressed Carbon Dioxide on Microbial Cell Viability. Applied and Environmental Microbiology, 65(2), 626-631. doi: 10.1128/aem.65.2.626-631.1999.

Donato, H., & Donato, M. (2019). Etapas na Condução de uma Revisão Sistemática. Acta Médica Portuguesa, 32(3), 227. doi: 10.20344/amp.11923.

Enomoto, A., Nakamura, K., Nagai, K., Hashimoto, T., & Hakoda, M. (1997). Inactivation of Food Microorganisms by High-pressure Carbon Dioxide Treatment with or without Explosive Decompression. Bioscience, Biotechnology, and Biochemistry, 61(7), 1133-1137. doi: 10.1271/bbb.61.1133.

Fraser D. (1951). Bursting Bacteria by Release of Gas Pressure. Nature, 167(4236), 33-34. doi: 10.1038/167033b0.

Feng, J., Zheng, Y., Zhang, X., Zhou, R., & Ma, M. (2022). Effect of supercritical carbon dioxide on bacterial community, volatile profiles and quality changes during storage of Mongolian cheese. Food Control, 109225.

Ferrentino, G., Barletta, D., Donsì, F., Ferrari, G., & Poletto, M. (2010). Experimental Measurements and Thermodynamic Modeling of CO2 Solubility at High Pressure in Model Apple Juices. Industrial & Engineering Chemistry Research, 49(6), 2992-3000. doi: 10.1021/ie9009974.

Fleury, C., Savoire, R., Harscoat-Schiavo, C., Hadj-Sassi, A., & Subra-Paternault, P. (2018). Optimization of supercritical CO2 process to pasteurize dietary supplement: Influencing factors and CO2 transfer approach. The Journal of Supercritical Fluids, 141, 240-251. doi: 10.1016/j.supflu.2018.01.009.

Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of ultrasound in food science and technology: a perspective. Foods 7: 164.

Garcia-Gonzalez, L., Geeraerd, A., Spilimbergo, S., Elst, K., Van Ginneken, L., & Debevere, J. et al. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, 117(1), 1-28. doi: 10.1016/j.ijfoodmicro.2007.02.018.

Gasperi, F., Aprea, E., Biasioli, F., Carlin, S., Endrizzi, I., Pirretti, G., & Spilimbergo, S. (2009). Effects of supercritical CO2 and N2O pasteurisation on the quality of fresh apple juice. Food Chemistry, 115(1), 129-136. doi: 10.1016/j.foodchem.2008.11.078.

Hossain, M., Nik Ab Rahman, N., Balakrishnan, V., F.M. Alkarkhi, A., Ahmad Rajion, Z., & Ab Kadir, M. (2015). Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology. Waste Management, 38, 462-473. doi: 10.1016/j.wasman.2015.01.003.

Hu, W., Zhou, L., Xu, Z., Zhang, Y., & Liao, X. (2013). Enzyme Inactivation in Food Processing using High Pressure Carbon Dioxide Technology. Critical Reviews in Food Science and Nutrition, 53(2), 145-161. doi: 10.1080/10408398.2010.526258.

Illera, A., Sanz, M., Beltrán, S., & Melgosa, R. (2019). High pressure CO2 solubility in food model solutions and fruit juices. The Journal of Supercritical Fluids, 143, 120-125. doi: 10.1016/j.supflu.2018.07.009.

Illera, A., Sanz, M., Trigueros, E., Beltrán, S., & Melgosa, R. (2018). Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. Journal of Food Engineering, 239, 64-71. doi: 10.1016/j.jfoodeng.2018.06.027.

Iqbal, A., Murtaza, A., Hu, W., Ahmad, I., Ahmed, A., & Xu, X. (2019). Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food and Bioproducts Processing, 117, 170-182. doi: 10.1016/j.fbp.2019.07.006.

Kincal, D., Hill, W., Balaban, M., Portier, K., Wei, C., & Marshall, M. (2006). A Continuous High Pressure Carbon Dioxide System for Microbial Reduction in Orange Juice. Journal of Food Science, 70(5), M249-M254. doi: 10.1111/j.1365-2621.2005.tb09979.x.

Kutlu, N., Pandiselvam, R., Saka, I., Kamiloglu, A., Sahni, P., & Kothakota, A. (2021). Impact of different microwave treatments on food texture. Journal Of Texture Studies. doi: 10.1111/jtxs.12635.

Liao, H., Zhong, K., Hu, X., & Liao, X. (2019). Effect of high pressure carbon dioxide on alkaline phosphatase activity and quality characteristics of raw bovine milk. Innovative Food Science & Emerging Technologies, 52, 457-462. doi: 10.1016/j.ifset.2019.02.005.

Manzocco, L., Plazzotta, S., Spilimbergo, S., & Nicoli, M. (2017). Impact of high-pressure carbon dioxide on polyphenoloxidase activity and stability of fresh apple juice. LWT - Food Science and Technology, 85, 363-371. doi: 10.1016/j.lwt.2016.11.052.

Marszałek, K., Doesburg, P., Starzonek, S., Szczepańska, J., Woźniak, Ł., & Lorenzo, J. et al. (2019). Comparative effect of supercritical carbon dioxide and high pressure processing on structural changes and activity loss of oxidoreductive enzymes. Journal of CO2 Utilization, 29, 46-56. doi: 10.1016/j.jcou.2018.11.007.

Marszałek, K., Krzyżanowska, J., Woźniak, Ł., & Skąpska, S. (2017). Kinetic modelling of polyphenol oxidase, peroxidase, pectin esterase, polygalacturonase, degradation of the main pigments and polyphenols in beetroot juice during high pressure carbon dioxide treatment. LWT - Food Science and Technology, 85, 412-417. doi: 10.1016/j.lwt.2016.11.018.

Martín-Muñoz, D., Tirado, D., & Calvo, L. (2022). Inactivation of Legionella in aqueous media by high-pressure carbon dioxide. The Journal of Supercritical Fluids, 180, 105431. doi: 10.1016/j.supflu.2021.105431.

Melo Silva, J., Rigo, A., Dalmolin, I., Debien, I., Cansian, R., Oliveira, J., & Mazutti, M. (2013). Effect of pressure, depressurization rate and pressure cycling on the inactivation of Escherichia coli by supercritical carbon dioxide. Food Control, 29(1), 76-81. doi: 10.1016/j.foodcont.2012.05.068.

Michelino, F., Zambon, A., Vizzotto, M., Cozzi, S., & Spilimbergo, S. (2018). High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander. Journal of CO2 Utilization, 24, 516-521. doi: 10.1016/j.jcou.2018.02.010.

Murtaza, A., Iqbal, A., Linhu, Z., Liu, Y., Xu, X., Pan, S., & Hu, W. (2019). Effect of high-pressure carbon dioxide on the aggregation and conformational changes of polyphenol oxidase from apple (Malus domestica) juice. Innovative Food Science & Emerging Technologies, 54, 43-50. doi: 10.1016/j.ifset.2019.03.001.

Murtaza, A., Iqbal, A., Marszałek, K., Iqbal, M., Waseem Ali, S., & Xu, X. et al. (2020). Enzymatic, Phyto-, and Physicochemical Evaluation of Apple Juice under High-Pressure Carbon Dioxide and Thermal Processing. Foods, 9(2), 243. doi: 10.3390/foods9020243.

Nakamura, K., Enomoto, A., Fukushima, H., Nagai, K., & Hakoda, M. (1994). Disruption of Microbial Cells by the Flash Discharge of High-pressure Carbon Dioxide. Bioscience, Biotechnology, and Biochemistry, 58(7), 1297-1301. doi: 10.1271/bbb.58.1297.

Paniagua-Martínez, I., Mulet, A., García-Alvarado, M., & Benedito, J. (2018). Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality. Innovative Food Science & Emerging Technologies, 47, 362-370. doi: 10.1016/j.ifset.2018.03.024.

Perrut, M. (2012). Sterilization and virus inactivation by supercritical fluids (a review). The Journal of Supercritical Fluids, 66, 359-371. doi: 10.1016/j.supflu.2011.07.007.

Porębska, I., Sokołowska, B., Skąpska, S., & Rzoska, S. (2017). Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control, 73, 24-30. doi: 10.1016/j.foodcont.2016.06.005.

Rao, L., Bi, X., Zhao, F., Wu, J., Hu, X., & Liao, X. (2015). Effect of High-pressure CO2 Processing on Bacterial Spores. Critical Reviews in Food Science and Nutrition, 56(11), 1808-1825. doi: 10.1080/10408398.2013.787385.

Rao, L., Wang, Y., Chen, F., & Liao, X. (2016). The Synergistic Effect of High Pressure CO2 and Nisin on Inactivation of Bacillus subtilis Spores in Aqueous Solutions. Frontiers in Microbiology, 07. doi: 10.3389/fmicb.2016.01507.

Roobab, U., Shabbir, M., Khan, A., Arshad, R., Bekhit, A., & Zeng, X. et al. (2021). High-pressure treatments for better quality clean-label juices and beverages: Overview and advances. LWT, 149, 111828. doi: 10.1016/j.lwt.2021.111828.

Santos Júnior, L., Heberle, I., Aquino, A., Oliveira, J., Ribeiro, D., Medeiros, J., & Amante, E. (2021). High-pressure supercritical carbon dioxide uses to inactivate Escherichia coli in pumpkin puree. Research, Society and Development, 10(4), e6510413853. doi: 10.33448/rsd-v10i4.13853.

Sehrawat, R., Kaur, B., Nema, P., Tewari, S., & Kumar, L. (2020). Microbial inactivation by high pressure processing: principle, mechanism and factors responsible. Food Science and Biotechnology, 30(1), 19-35. doi: 10.1007/s10068-020-00831-6.

Sikin, A., Walkling-Ribeiro, M., & Rizvi, S. (2016). Synergistic effect of supercritical carbon dioxide and peracetic acid on microbial inactivation in shredded Mozzarella-type cheese and its storage stability at ambient temperature. Food Control, 70, 174-182. doi: 10.1016/j.foodcont.2016.05.050.

Silva, E., Alvarenga, V., Bargas, M., Sant'Ana, A., & Meireles, M. (2018). Non-thermal microbial inactivation by using supercritical carbon dioxide: Synergic effect of process parameters. The Journal of Supercritical Fluids, 139, 97-104. doi: 10.1016/j.supflu.2018.05.013.

Silva, E., Arruda, H., Pastore, G., Meireles, M., & Saldaña, M. (2020b). Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrasonics Sonochemistry, 63, 104942. doi: 10.1016/j.ultsonch.2019.104942.

Silva, E., Meireles, M., & Saldaña, M. (2020a). Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends in Food Science & Technology, 97, 381-390. doi: 10.1016/j.tifs.2020.01.025.

Smigic, N., Djekic, I., Tomic, N., Udovicki, B., & Rajkovic, A. (2019). The potential of foods treated with supercritical carbon dioxide (sc-CO2) as novel foods. British Food Journal, 121(3), 815-834. doi: 10.1108/bfj-03-2018-0168.

Soares, D., Lerin, L., Cansian, R., Oliveira, J., & Mazutti, M. (2013). Inactivation of Listeria monocytogenes using supercritical carbon dioxide in a high-pressure variable-volume reactor. Food Control, 31(2), 514-518. doi: 10.1016/j.foodcont.2012.11.045.

Soares, G., Learmonth, D., Vallejo, M., Davila, S., González, P., Sousa, R., & Oliveira, A. (2019). Supercritical CO2 technology: The next standard sterilization technique?. Materials Science and Engineering: C, 99, 520-540. doi: 10.1016/j.msec.2019.01.121.

Spilimbergo, S., & Bertucco, A. (2003). Non-thermal bacterial inactivation with dense CO2. Biotechnology and Bioengineering, 84(6), 627-638. doi: 10.1002/bit.10783.

Spilimbergo, S., Bertucco, A., Basso, G., & Bertoloni, G. (2005). Determination of extracellular and intracellular pH of Bacillus subtilis suspension under CO2 treatment. Biotechnology and Bioengineering, 92(4), 447-451. doi: 10.1002/bit.20606.

Torabian, G., Bahramian, B., Zambon, A., Spilimbergo, S., Adil, Q., & Schindeler, A. et al. (2018). A hybrid process for increasing the shelf life of elderberry juice. The Journal of Supercritical Fluids, 140, 406-414. doi: 10.1016/j.supflu.2018.07.023.

Valley, G., & Rettger, L. (1927). The influence of carbon dioxide on bacteria. Journal of Bacteriology, 14(2), 101-137. doi: 10.1128/jb.14.2.101-137.1927

Wang, W., Rao, L., Wu, X., Wang, Y., Zhao, L., & Liao, X. (2020). Supercritical Carbon Dioxide Applications in Food Processing. Food Engineering Reviews, 13(3), 570-591. doi: 10.1007/s12393-020-09270-9.

Yang, D., Wang, Y., Zhao, L., Rao, L., & Liao, X. (2022). Extracellular pH decline introduced by high pressure carbon dioxide is a main factor inducing bacteria to enter viable but non-culturable state. Food Research International, 151, 110895. doi: 10.1016/j.foodres.2021.110895.

Yu, T., Niu, L., & Iwahashi, H. (2020). High-Pressure Carbon Dioxide Used for Pasteurization in Food Industry. Food Engineering Reviews, 12(3), 364-380. doi: 10.1007/s12393-020-09240-1.

Zhang, J., Iqbal, A., Murtaza, A., Zhou, X., Xu, X., Pan, S., & Hu, W. (2021). Effect of high pressure carbon dioxide on the browning inhibition of sugar-preserved orange peel. Journal of CO2 Utilization, 46, 101467. doi: 10.1016/j.jcou.2021.101467.

Zhang, Z., Wang, L., Zeng, X., Han, Z., & Brennan, C. (2018). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science & Technology, 54(1), 1-13. doi: 10.1111/ijfs.13903.

Downloads

Publicado

06/09/2022

Como Citar

OLIVEIRA, A. dos S. .; MALTA, H. L. . Condições de processo de dióxido de carbono de alta pressão: comparações e algumas disparidades no processamento de alimentos. Research, Society and Development, [S. l.], v. 11, n. 12, p. e23111234068, 2022. DOI: 10.33448/rsd-v11i12.34068. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34068. Acesso em: 12 maio. 2025.

Edição

Seção

Engenharias