O uso de hidrogel de prata no tratamento de feridas como alternativa para reduzir patógenos resistentes a antibióticos

Autores

DOI:

https://doi.org/10.33448/rsd-v11i12.34849

Palavras-chave:

Hidrogel; Prata; Resistência antimicrobiana; Bactérias; Feridas; Antibiótico; Infecção; Biomedicina; Biomaterial; Tratamento médico.

Resumo

A ciência médica está atualmente em um estágio inicial para controlar efetivamente os danos à pele. Uma das principais barreiras para uma boa cicatrização de feridas é a infecção bacteriana, que apresenta um risco de efeitos nocivos a longo prazo. Uma ferida limpa, livre de infecções bacterianas, é essencial para a regeneração rápida e eficaz da pele. O hidrogel é um dos melhores biomateriais para administração de antibióticos em áreas de feridas devido à sua alta hidrofilicidade, rede tridimensional distinta, boa biocompatibilidade e aderência celular. Embora muitos antibióticos sejam bem-sucedidos no tratamento de feridas infectadas, o uso impróprio ou repetitivo desses medicamentos pode fazer com que os germes se tornem resistentes. Notoriamente, a resistência antimicrobiana em bactérias patogênicas já é considerada um grave problema de saúde pública global. Recentemente, o uso de prata associado à nanotecnologia tem sido reconsiderado como uma importante alternativa para reduzir a disseminação de patógenos resistentes a antibióticos. Os curativos de hidrogel de prata tornaram-se agentes eficazes no manejo de feridas, substituindo o uso de antibióticos. O objetivo da revisão é demonstrar a importância dos hidrogéis no tratamento de feridas, bem como as propriedades antibacterianas dos hidrogéis de prata e suas implicações no tratamento de feridas.

Referências

Abdelghany, T. M., Al-Rajhi, A. M. H., Al Abboud, M. A., Alawlaqi, M. M., Ganash Magdah, A., Helmy, E. A. M., & Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review. BioNanoSci., 8, 5–16. https://doi.org/10.1007/s12668-017-0413-3

Adams, F. (n.d.). Works by Hippocrates-On ulcers. Written 400 B.C.E. Retrieved August 20, 2022, from http://classics.mit.edu/Hippocrates/ulcers.html

Afifi, M., Saddick, S., & Abu Zinada, O. A. (2016). Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J. Biol. Sci., 23, 754–760. https://doi.org/10.1016/j.sjbs.2016.06.008

Ahmed, A., & Boateng, J. (2018). Calcium alginate-based antimicrobial film dressings for potential healing of infected foot ulcers. Ther. Deliv., 9, 185–204. https://doi.org/10.4155/tde-2017-0104

Ahmed, M., Punshon, G., Darbyshire, A., & Seifalian, A. M. (2013). Effects of sterilization treatments on bulk and surface properties of nanocomposite biomaterials. J. Biomed. Mater. Res. - B Appl. Biomater., 101, 1182–1190. https://doi.org/10.1002/jbm.b.32928

Al-Bahrani, R., Raman, J., Lakshmanan, H., Hassan, A. A., & Sabaratnam, V. (2017). Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater. Lett., 186, 21–25. https://doi.org/10.1016/j.matlet.2016.09.069

Alavi, M., & Rai, M. (2019). Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev. Anti-Infect. Ther., 17, 419–428. https://doi.org/10.1080/14787210.2019.1614914

Alexander, J. (2009). History of the medical use of silver. Surg. Infect., 10, 289–292. https://doi.org/10.1089/sur.2008.9941

Anisha, B., Biswas, R., Chennazhi, K., & Jayakumar, R. (2013). Chitosan–hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int. J. Biol. Macromol., 62, 310–320. https://doi.org/10.1016/j.ijbiomac.2013.09.011

Anjum, S., Arora, A., Alam, M. S., & Gupta, B. (2016). Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int. J. Pharm., 508, 92–101. https://doi.org/10.1016/j.ijpharm.2016.05.013

Atiyeh, B. S., Costagliola, M., Hayek, S. N., & Dibo, S. A. (2007). Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 33, 139–148. https://doi.org/10.1016/j.burns.2006.06.010

Axibal, E., & Brown, M. (2019). Surgical dressings and novel skin substitutes. Dermatol. Clin., 37, 349–366. https://doi.org/10.1016/j.det.2019.03.005

Banerjee, J., Seetharaman, S., Wrice, N. L., Christy, R. J., & Natesan, S. (2019). Delivery of silver sulfadiazine and adipose derived stem cells using fibrin hydrogel improves infected burn wound regeneration. PLoS ONE, 14, 1–22. https://doi.org/10.1371/journal.pone.0217965

Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria-"A Battle of the Titans". Front. Microbiol., 9, 1–26. https://doi.org/10.3389/fmicb.2018.01441

Beg, M., Maji, A., Mandal, A. K., Das, S., Aktara, M. N., Jha, P. K., & Hossain, M. (2017). Green synthesis of silver nanoparticles using Pongamia pinnata seed: Characterization, antibacterial property, and spectroscopic investigation of interaction with human serum albumin. J. Mol. Recognit., 30, 1–8. https://doi.org/10.1002/jmr.2565

Benamer, S., Mahlous, M., Boukrif, A., Mansouri, B., & Youcef, S. L. (2006). Synthesis and characterisation of hydrogels based on poly(vinyl pyrrolidone). Nucl. Instrum. Methods Phys. Res. B, 248, 284–290. https://doi.org/10.1016/j.nimb.2006.04.072

Berdous, D., & Ferfera-Harrar, H. (2016). Green synthesis of nanosilver-loaded hydrogel nanocomposites for antimicrobial application. Inter. J. of Bio. Biomol. Agricul. Food and Biotech. Eng., 10, 529–536.

Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain. Mater. Technol., 13, 18–23. https://doi.org/10.1016/j.susmat.2017.08.001

Bilal, M., Rasheed, T., Iqbal, H., Hu, H., & Zhang, X. (2017). Silver nanoparticles: biosynthesis and antimicrobial potentialities. Int. J. Pharmacol., 13, 832–845.

Bondarenko, O., Ivask, A., Käkinen, A., Kurvet, I., & Kahru, A. (2013). Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS ONE, 8, e64060. https://doi.org/10.1371/journal.pone.0064060

Boonkaew, B., Kempf, M., Kimble, R., Supaphol, P., & Cuttle, L. (2014). Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: ActicoatTM and PolyMem Silver®. Burns, 40, 89–96. https://doi.org/10.1016/j.burns.2013.05.011

Boonkaew, B., Suwanpreuksa, P., Cuttle, L., Barber, P., & Supaphol, P. (2013). Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J. Appl. Polym. Sci., 131. https://doi.org/10.1002/app.40215

Bowler, P., Jones, S., Walker, M., & Parsons, D. (2004). Microbicidal properties of a silver- containing hydrofiber dressing against a variety of burn wound pathogens. J. Burn Care Rehabil., 25, 192–196. https://doi.org/10.1097/01.bcr.0000112331.72232.1b

Bulmer, C., Margaritis, A., & Xenocostas, A. (2012). Production and characterization of novel chitosan nanoparticles for controlled release of rHu-Erythropoietin. Biochem. Eng. J., 68, 61–69. https://doi.org/10.1016/j.bej.2012.07.007

Butko, Y., Tkachova, O., Ulanova, V., Sahin, Y., Levashova, O., & Tishakova, T. (2019). Immune histochemical study of KI-67 level and ribonucleic acid in the process of healing of burn wounds after treatment with drugs containing dexpanthenol and ceramide. Biointerface Res. Appl. Chem., 9, 4586–4590. https://doi.org/10.33263/BRIAC96.58659

Capanema, N., Mansur, A., Carvalho, S., Mansur, L., Ramos, C., Lage, A., & Mansur, H. (2017). Physicochemical properties and antimicrobial activity of biocompatible carboxymethylcellulose-silver nanoparticle hybrids for wound dressing and epidermal repair. J. Appl. Polym. Sci., 135, 45812. https://doi.org/10.1002/app.45812

Cardona, A. F., & Wilson, S. E. (2015). Skin and soft-tissue infections: A critical review and the role of telavancin in their treatment. Clin. Infect. Dis., 61, S69–S78. https://doi.org/10.1093/cid/civ528

Chaudhuri, S., & Chandela, S. (2016). Plant mediated green synthesis of silver nanoparticles using tecomella undulata leaf extract and their characterization. Nano Biom. Eng., 8, 1–8. https://doi.org/10.5101/NBE.V8I1.P1-8

Chauhan, R., Reddy, A., & Abraham, J. (2015). Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Appl. Nanosci., 5, 63–71. https://doi.org/10.1007/s13204-014-0292-7

Dai, T., Wang, C., Wang, Y., Xu, W., Hu, J., & Cheng, Y. (2018). A nanocomposite hydrogel with potent and broad-spectrum antibacterial activity. ACS Appl. Mater. Interfaces, 10, 15163–15173. https://doi.org/10.1021/acsami.8b02527

Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 7, 1–17. https://doi.org/10.3389/fmicb.2016.01831

David, C. (1975). Thermal degradation of polymers. Comprehensive Chemical Kinetics, 14, 1–173. https://doi.org/10.1016/S0069-8040(08)70333-9

de Kraker, M. E. A., Stewardson, A. J., & Harbarth, S. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med, 13, 1–6. https://doi.org/10.1371/journal.pmed.1002184

Durán, N., Durán, M., Jesus, M., Seabra, A., Fávaro, W., & Nakazato, G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed.: Nanotechnol. Biol. Med., 12, 789–799. https://doi.org/10.1016/j.nano.2015.11.016

Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah, A., Taghizadeh, A., Ghasemi, Y., & Berenjian, A. (2017). Plant-mediated synthesis and applications of iron nanoparticles. Mol. Biotechnol., 60, 154–168. https://doi.org/10.1007/s12033-017-0053-4

Erring, M., Gaba, S., Mohsina, S., Tripathy, S., & Sharma, R. (2019). Comparison of efficacy of silver-nanoparticle gel, nano-silver-foam and collagen dressings in treatment of partial thickness burn wounds. Burns, 45, 1888–1894. https://doi.org/10.1016/j.burns.2019.07.019

Eugenio, M., Muller, N., Frasés, S., Almeida-Paes, R., Lima, L., Lemgruber, L., Farina, M., Souza, W., & SantAnna, C. (2016). Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv., 6, 9893–9904. https://doi.org/https://doi.org/ 10.1039/C5RA22727E

Ezzelarab, M. H., Nouh, O., Ahmed, A. N., Anany, M. G., Rachidi, N. G. El, & Salem, A. S. (2019). A randomized control trial comparing transparent film dressings and conventional occlusive dressings for elective surgical procedures. Open Access Maced. J. Med. Sci., 7, 2844–2850. https://doi.org/10.3889/oamjms.2019.809

Farris, S., Schaich, K. M., Liu, L. S., Piergiovanni, L., & Yam, K. L. (2009). Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food. Sci. Technol., 20(8), 316–332. https://doi.org/10.1016/j.tifs.2009.04.003

Feng, Y., Li, X., Zhang, Q., Yan, S., Guo, Y., Li, M., & You, R. (2019). Mechanically robust and flexible silk protein/polysaccharide composite sponges for wound dressing. Carbohydr. Polym., 216, 17–24. https://doi.org/10.1016/j.carbpol.2019.04.008

Fernández, J. G., Fernández-Baldo, M. A., Berni, E., Camí, G., Durán, N., Raba, J., & Sanz, M. I. (2016). Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem., 51, 1306–1313. https://doi.org/10.1016/j.procbio.2016.05.021

Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20, 8856–8874. https://doi.org/10.3390/molecules20058856

French, G. (2010). The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents, 36, S3–S7. https://doi.org/10.1016/S0924-8579(10)70003-0

Friedman, N., Temkin, E., & Carmeli, Y. (2016). The negative impact of antibiotic resistance. Clin. Microbiol. Infect., 22, 416–422. https://doi.org/10.1016/j.cmi.2015.12.002

García-Pérez, A. N., de Jong, A., Junker, S., Becher, D., Chlebowicz, M. A., Duipmans, J. C., Jonkman, M. F., & van Dijl, J. M. (2018). From the wound to the bench: Exoproteome interplay between wound-colonizing staphylococcus aureus strains and co-existing bacteria. Virulence, 9, 363–378. https://doi.org/10.1080/21505594.2017.1395129

Gnanajobitha, G., Paulkumar, K., Vanaja, M., Rajeshkumar, S., Malarkodi, C., Annadurai, G., & Kannan, C. (2013). Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostructure Chem., 3(1). https://doi.org/10.1186/2193-8865-3-67

Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A. T., Davi, M. F. T., Rubira, A. F., & Muniz, E. C. (2015a). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J., 72, 365–385. https://doi.org/10.1016/j.eurpolymj.2015.04.017

Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A. T., Davi, M. F. T., Rubira, A. F., & Muniz, E. C. (2015b). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal, 72, 365–385. https://doi.org/10.1016/j.eurpolymj.2015.04.017

Gupta, A, Mumtaz, S., Li, C.-H., Hussain, I., & Rotello, V. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev., 48, 415–427. https://doi.org/10.1039/c7cs00748e

Gupta, Abhishek, Briffa, S. M., Swingler, S., Gibson, H., Kannappan, V., Adamus, G., Kowalczuk, M., Martin, C., & Radecka, I. (2020). Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules, 21, 1802–1811. https://doi.org/10.1021/acs.biomac.9b01724

Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Adv. Drug. Deliv. Rev., 60, 1638–1649. https://doi.org/10.1016/j.addr.2008.08.002

Hanif, M., Juluri, R., Fojan, P., & Popok, V. (3026). Polymer films with size-selected silver nanoparticles as plasmon resonance-based transducers for protein sensing. Biointerface Res. Appl. Chem., 6, 1564–1568.

Harra, J., Juuti, P., Haapanen, J., Sorvali, M., Roumeli, E., Honkanen, M., Vippola, M., Yli-Ojanperä, J., & Mäkelä, J. M. (2015). Coating of silica and titania aerosol nanoparticles by silver vapor condensation. Aerosol. Sci. Technol., 49, 767–776. https://doi.org/10.1080/02786826.2015.1072263

Hawkey, P. M. (2008). The growing burden of antimicrobial resistance. J. Antimicrob. Chemother., 62 Suppl 1, 1–9. https://doi.org/10.1093/jac/dkn241

Higa, A., Mambrini, G., Hausen, M., Strixino, F., & Leite, F. (2016). Ag-nanoparticle-based nano-immunosensor for anti-glutathione S-transferase detection. Biointerface Res. Appl. Chem., 6, 1053–1058.

Hoffman, A. (2012). Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 64, 18–23. https://doi.org/10.1016/j.addr.2012.09.010

Hoque, J., Bhattacharjee, B., Prakash, R. G., Paramanandham, K., & Haldar, J. (2018). Dual function injectable hydrogel for controlled release of antibiotic and local antibacterial therapy. Biomacromolecules, 19, 267–278. https://doi.org/10.1021/acs.biomac.7b00979

Hu, S., Bi, S., Yan, D., Zhou, Z., Sun, G., Cheng, X., & Chen, X. (2018). Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing. Carbohydr. Polym., 184, 154–163. https://doi.org/10.1016/j.carbpol.2017.12.033

I. I. Abdel-Hafez, S., A. Nafady, N., R. Abdel-Rahim, I., M. Shaltout, A., & A. Mohamed, M. (2016). Biogenesis and Optimisation of Silver Nanoparticles by the Endophytic Fungus Cladosporium sphaerospermum. IJNC, 2, 11–19. https://doi.org/10.18576/ijnc/020103

Iniyan, A. M., Kannan, R. R., Joseph, F. J. R. S., Mary, T. R. J., Rajasekar, M., Sumy, P. C., Rabel, A. M., Ramachandran, D., & Vincent, S. G. P. (2017). In vivo safety evaluation of antibacterial silver chloride nanoparticles from Streptomyces exfoliatus ICN25 in zebrafish embryos. Microb. Pathog., 112, 76–82. https://doi.org/10.1016/j.micpath.2017.07.054

Inoue, A., Sugimoto, H., & Fujii, M. (2019). Silver nanoparticles stabilized with a silicon nanocrystal shell and their antimicrobial activity. RSC Adv., 9, 15171–15176. https://doi.org/10.1039/c9ra02559f

Iravani, S., Korbekandi, H., Mirmohammadi, S. V, & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci., 9, 385–406. http://www.ncbi.nlm.nih.gov/pubmed/26339255%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4326978

Ischakov, R., Adler-Abramovich, L., Buzhansky, L., Shekhter, T., & Gazit, E. (2013). Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorg. Med. Chem., 21, 3517–3522. https://doi.org/10.1016/j.bmc.2013.03.012

Jaiswal, M., Koul, V., & Dinda, A. (2016). In vitro and in vivo investigational studies of a nanocomposite- hydrogel-based dressing with a silver-coated chitosan wafer for full-thickness skin wounds. J. Appl. Polym. Sci., 133, 43472. https://doi.org/10.1002/app.43472

Jeschke, M., & Gauglitz, G. (2020). Pathophysiology of burn injuries. In M. Jeschke, L.-P. Kamolz, F. Sjöberg, & S. Wolf (Eds.), Handbook of Burns Volume 1 (pp. 229–245). Springer.

Jonášová, E. P., & Stokke, B. T. (2016). Bioresponsive DNA-co-polymer hydrogels for fabrication of sensors. COCIS, 26, 1–8. https://doi.org/10.1016/j.cocis.2016.07.001

Joshi Navare, K., Eggermont, L., Rogers, Z., Mohammed, H., Colombani, T., & Bencherif, S. (2020). Antimicrobial hydrogels: Key considerations and engineering strategies for biomedical applications. In B. Li, T. Moriarty, T. Webster, & M. Xing (Eds.), Racing for the Surface: Pathogenesis of Implant Infection and Advanced Antimicrobial Strategies (pp. 511–542). Springer International Publishing.

Kamoun, E. A., Kenawy, E. R. S., & Chen, X. (2017). A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res., 8, 217–233. https://doi.org/10.1016/j.jare.2017.01.005

Kasithevar, M., Saravanan, M., Prakash, P., Kumar, H., Ovais, M., Barabadi, H., & Shinwari, Z. K. (2017). Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. J. Interdiscip. Nanomed., 2, 131–141. https://doi.org/10.1002/jin2.26

Keat, C. L., Aziz, A., Eid, A. M., & Elmarzugi, N. A. (2015). Biosynthesis of nanoparticles and silver nanoparticles. Bioresour. Bioprocess., 2, 1–11. https://doi.org/10.1186/s40643-015-0076-2

Khalandi, B., Asadi, N., Milani, M., Davaran, S., Abadi, A. J. N., Abasi, E., & Akbarzadeh, A. (2017). A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug. Res., 67, 70–76. https://doi.org/10.1055/s-0042-113383

Khan, M., & Lo, I. (2017). Removal of ionizable aromatic pollutants from contaminated water using nano γ-Fe 2 O 3 based magnetic cationic hydrogel: Sorptive performance, magnetic separation and reusability. J. Hazard. Mater., 322, 195–204. https://doi.org/10.1016/j.jhazmat.2016.01.051

Kim, M. H., Park, H., Nam, H. C., Park, S. R., Jung, J. Y., & Park, W. H. (2018). Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohydr. Polym., 181, 579–586. https://doi.org/10.1016/j.carbpol.2017.11.109

Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J., 100, 1–11. https://doi.org/10.1016/j.eurpolymj.2017.12.046

Kokabi, M., Sirousazar, M., & Hassan, Z. (2007). PVA–clay nanocomposite hydrogels for wound dressing. Eur. Polym. J., 43, 773–781. https://doi.org/10.1016/j.eurpolymj.2006.11.030

Kopeček, J. (2007). Hydrogel biomaterials: A smart future? Biomaterials, 28, 5185–5192. https://doi.org/10.1016/j.biomaterials.2007.07.044

Kopecek, J., & Yang, J. (2007). Hydrogels as smart biomaterials. Polym. Int., 56, 1078–1098. https://doi.org/10.1002/pi.2253

Korbekandi, H., Mohseni, S., Jouneghani, R. M., Pourhossein, M., & Iravani, S. (2016). Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif. Cells Nanomed., 44, 235–239. https://doi.org/10.3109/21691401.2014.937870

Kumar, M., Curtis, A., & Hoskins, C. (2018). Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics, 10, 1–17. https://doi.org/10.3390/pharmaceutics10010011

Lara, H. H., Ayala-Núñez, N. V., del Turrent, L. C. I., & Padilla, C. R. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol., 26, 615–621. https://doi.org/10.1007/s11274-009-0211-3

Lateef, A., & Adeeyo, A. (2015). Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes. Not. Sci. Biol., 7, 405–411. https://doi.org/10.15835/nsb.7.4.9643

Lee, S. H., & Jun, B. H. (2019). Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci., 20, 865. https://doi.org/10.3390/ijms20040865

Liang, Y., He, J., & Guo, B. (2021). Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 15, 12687–12722. https://doi.org/10.1021/acsnano.1c04206

Liao, S., Zhang, Y., Pan, X., Zhu, F., Jiang, C., Liu, Q., Cheng, Z., Dai, G., Wu, G., Wang, L., & Chen, L. (2019). Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed., 14, 1469–1487. https://doi.org/10.2147/IJN.S191340

Lima, R., Del Fiol, F. S., & Balcão, V. M. (2019). Prospects for the use of new technologies to combat multidrug-resistant bacteria. Front. Pharmacol., 10, 1–10. https://doi.org/10.3389/fphar.2019.00692

Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., Li, Z., & Wang, J. (2018). A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv., 8, 7533–7549. https://doi.org/10.1039/c7ra13510f

Liu, X., Nielsen, L. H., Kłodzińska, S. N., Nielsen, H. M., Qu, H., Christensen, L. P., Rantanen, J., & Yang, M. (2018). Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur. J. Pharm. Biopharm., 123, 42–49. https://doi.org/10.1016/j.ejpb.2017.11.004

Lopez-Carrizales, M., Velasco, K. I., Castillo, C., Flores, A., Magaña, M., Martinez-Castanon, G. A., & Martinez-Gutierrez, F. (2018). In vitro synergism of silver nanoparticles with antibiotics as an alternative treatment in multiresistant uropathogens. Antibiotics, 7, 1–13. https://doi.org/10.3390/antibiotics7020050

Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2000). Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes Infect., 2, 1051–1060. https://doi.org/10.1016/S1286-4579(00)01259-4

El-Naggar, M., Gohar, Y., Sorour, M., Waheed, M. (2016). Hydrogel dressing with a nano-formula against methicillin-resistant staphylococcus aureus and pseudomonas aeruginosa diabetic foot bacteria. J. Microbiol. Biotechnol., 26, 408–420.

http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L608567592%0Ahttp://dx.doi.org/10.4014/jmb.1506.06048

Ma, R., Wang, Y., Qi, H., Shi, C., Wei, G., Xiao, L., Huang, Z., Liu, S., Yu, H., Teng, C., Liu, H., Murugadoss, V., Zhang, J., Wang, Y., & Guo, Z. (2019). Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation. Compos. Part B Eng., 167, 396–405. https://doi.org/10.1016/j.compositesb.2019.03.006

Madaghiele, M., Demitri, C., Sannino, A., & Ambrosio, L. (2014). Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns Trauma, 2, 153–161. https://doi.org/10.4103/2321-3868.143616

Mahinroosta, M., Farsangi, Z., Allahverdi, A., & Shakoori, Z. (2018). Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Mater. Today Chem., 8, 42–55. https://doi.org/10.1016/j.mtchem.2018.02.004

Maitra, J., & Shukla, V. K. (2014). Cross-linking in hydrogels - A review. Am. J. Polym. Sci., 4, 25–31. https://doi.org/10.5923/j.ajps.20140402.01

Maliszewska, I., Juraszek, A., & Bielska, K. (2014). Green synthesis and characterization of silver nanoparticles using Ascomycota fungi Penicillium nalgiovense AJ12. J. Clust. Sci., 25, 989–1004. https://doi.org/10.1007/s10876-013-0683-z

Manimozhi, R., & Anitha, R. (2014). Mycosynthesis of silver nanoparticles using aqueous extract of Aspergillus Flavus Mycelium and its characterization. IJPDA, 2, 734–739. www.ijpda.com

Manna, D., Mandal, A., Sen, I., Maji, P., Chakraborti, S., Chakraborty, R., & Islam, S. (2015). Antibacterial and DNA degradation potential of silver nanoparticles synthesized via green route. Int. J. Biol. Macromol., 80, 455–459. https://doi.org/10.1016/j.ijbiomac.2015.07.028

Martín, M., López, O., Ciolino, A., Morata, V., Villar, M., & Ninago, M. (2019). Immobilization of enological pectinase in calcium alginate hydrogels: A potential biocatalyst for winemaking. Biocatal. Agric. Biotechnol., 18, 91–101. https://doi.org/10.1016/j.bcab.2019.101091

McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L. D., & Cho, H. (2015). Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules, 20, 20397–20408. https://doi.org/10.3390/molecules201119705

McShan, D., Ray, P. C., & Yu, H. (2014). Molecular toxicity mechanism of nanosilver. J. Food Drug Anal., 22, 116–127. https://doi.org/10.1016/j.jfda.2014.01.010

Mekkawy, A., El-Mokhtar, M., Nafady, N., Yousef, N., Hamad, M., El-Shanawany, S., Ibrahim, E., & Elsabahy, M. (2017). In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: Effect of surface coating and loading into hydrogels. Int. J. Nanomed, 12, 759–777. https://doi.org/10.2147/IJN.S124294

Michalska-Sionkowska, M., Kaczmarek, B., Walczak, M., & Sionkowska, A. (2018). Antimicrobial activity of new materials based on the blends of collagen/chitosan/hyaluronic acid with gentamicin sulfate addition. Mater. Sci. Eng. C Mater. Biol. Appl., 86, 103–108. https://doi.org/10.1016/j.msec.2018.01.005

Mitura, S., Sionkowska, A., & Jaiswal, A. (2020). Biopolymers for hydrogels in cosmetics: Review. J. Mater. Sci.: Mater. Med., 31, 1–14. https://doi.org/10.1007/s10856-020-06390-w

Mofazzal Jahromi, M. A., Sahandi Zangabad, P., Moosavi Basri, S. M., Sahandi Zangabad, K., Ghamarypour, A., Aref, A. R., Karimi, M., & Hamblin, M. R. (2018). Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev., 123, 33–64. https://doi.org/10.1016/j.addr.2017.08.001

Mohammadzadeh Pakdel, P., & Peighambardoust, S. J. (2018). A review on acrylic based hydrogels and their applications in wastewater treatment. Journal of Environmental Management, 217, 123–143. https://doi.org/10.1016/j.jenvman.2018.03.076

Mohandas, A., Deepthi, S., Biswas, R., & Jayakumar, R. (2018). Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact. Mater., 3, 267–277. https://doi.org/10.1016/j.bioactmat.2017.11.003

Mohanta, Y. K., Singdevsachan, S. K., Parida, U. K., Panda, S. K., Mohanta, T. K., & Bae, H. (2016). Green synthesis and antimicrobial activity of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India. IET Nanobiotechnol., 10, 184–189. https://doi.org/10.1049/iet-nbt.2015.0059

Möhler, J. S., Sim, W., Blaskovich, M. A. T., Cooper, M. A., & Ziora, Z. M. (2018). Silver bullets: A new lustre on an old antimicrobial agent. Biotechnol. Adv., 36, 1391–1411. https://doi.org/10.1016/j.biotechadv.2018.05.004

Morales, M., Gallardo, V., Clarés, B., Carcía, M., & Ruiz, M. (2009). Study and description of hydrogels and organogels as vehicles for cosmetic active ingredients. J. Cosmet. Sci., 60, 627–636.

Mukherji, S., Bharti, S., Shukla, G., & Mukherji, S. (2019). Synthesis and characterization of size- and shape-controlled silver nanoparticles. Phys. Sci. Rev., 4, 20170082. https://doi.org/doi.org/10.1515/psr-2017-0082

Murray, K., Kennedy, J., McEvoy, B., Vrain, O., Ryan, D., Cowman, R., & Higginbotham, C. (2013). Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers. J. Mech. Behav. Biomed. Mater.Ehav Biomed Mater, 17, 252–268. https://doi.org/10.1016/j.jmbbm.2012.09.011

Nam, G., Rangasamy, S., Purushothaman, B., & Song, J. M. (2015). The application of bactericidal silver nanoparticles in wound treatment. Nanomater. Nanotechnol., 5(1). https://doi.org/10.5772/60918

Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed.: Nanotechnol. Biol. Med., 5, 452–456. https://doi.org/10.1016/j.nano.2009.01.012

Nascimento, M., & Lombello, C. (2016). Hyaluronic acid and chitosan based hydrogels for cartilage tissue engeneering. Polymers, 26, 360–370. https://doi.org/10.1590/0104-1428.1987

Negut, I., Grumezescu, V., & Grumezescu, A. M. (2018). Treatment strategies for infected wounds. Molecules, 23, 1–23. https://doi.org/10.3390/molecules23092392

Nešović, K., Kojić, V., Rhee, K. Y., & Mišković-Stanković, V. (2017). Electrochemical synthesis and characterization of silver doped poly(vinyl alcohol)/chitosan hydrogels. Corrosion, 73, 1437–1447. https://doi.org/10.5006/2507

Nesovic, K., & Miskovic-Stankovic, V. (2020). A comprehensive review of the polymer-based hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. Polym. Eng. Sci., 60, 1393–1419. https://doi.org/10.1002/pen.25410

Nischwitz, S., Hofmann, E., & Kamolz, L.-P. (2019). The ideal wound dressing — Beyond the ideal: A short comment on ‘Properties of an ideal burn dressing: A survey of burn survivors and front-line burn healthcare providers’ by T. Carta, J.P. Gawaziuk et al. Burns, 45, 1485–1486. https://doi.org/10.1016/j.burns.2018.11.023

Nowack, B., Krug, H. F., & Height, M. (2011). 120 years of nanosilver history: Implications for policy makers. Environ. Sci. Technol., 45, 7593–7595. https://doi.org/10.1021/es2017895

Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nanotoday, 10, 339–354. https://doi.org/10.1016/j.nantod.2015.04.002

Paladini, F., Meikle, S., Cooper, I., Lacey, J., Perugini, V., & Santin, M. (2013). Silver-doped self-assembling di-phenylalanine hydrogels as wound dressing biomaterials. J. Mater. Sci. Mater. Med., 24, 2461–2472. https://doi.org/10.1007/s10856-013-4986-2

Pan, H., Fan, D., Duan, Z., Zhu, C., Fu, R., & Li, X. (2019). Non-stick hemostasis hydrogels as dressings with bacterial barrier activity for cutaneous wound healing. Mater. Sci. Eng. C, 105, 110118. https://doi.org/10.1016/j.msec.2019.110118

Pareek, V., Gupta, R., & Panwar, J. (2018a). Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater. Sci. Eng. C, 90, 739–749. https://doi.org/10.1016/j.msec.2018.04.093

Pareek, V., Gupta, R., & Panwar, J. (2018b). Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Materials Science and Engineering C, 90(November 2017), 739–749. https://doi.org/10.1016/j.msec.2018.04.093

Parikh, D. V., Fink, T., Rajasekharan, K., Sachinvala, N. D., Sawhney, A. P. S., Calamari, T. A., & Parikh, A. D. (2005). Antimicrobial silver/sodium carboxymethyl cotton dressings for burn wounds. Text. Res. J., 75, 134–138. https://doi.org/10.1177/004051750507500208

Patel, A., & Mequanint, K. (2011). Hydrogel biomaterials. In R. Fazel-Razai (Ed.), Biomedical Engieneering – Frontiers and Challenges. IntechOpen. https://doi.org/10.5772/24856

Pensaifini, M., Ehret, A., Studeli, S., Marino, D., Kaech, A., Reichmann, E., & Mazza, E. (2017). Factors affecting the mechanical behavior of collagen hydrogels for skin tissue engineering. J. Mech. Behav. Biomed. Mater., 69, 85–97. https://doi.org/10.1016/j.jmbbm.2016.12.004

Petkovšek, Ž., Eleršič, K., Gubina, M., Žgur-Bertok, D., & Erjavec, M. S. (2009). Virulence potential of Escherichia coli isolates from skin and soft tissue infections. J. Clin. Microbiol., 47, 1811–1817. https://doi.org/10.1128/JCM.01421-08

Phillip, E., Murthy, N., Bolikal, D., Narayanan, P., Kohn, J., Lavelle, L., Bodnar, S., & Pricer, K. (2013). Ethylene oxide’s role as a reactive agent during sterilization: Effects of polymer composition and device architecture. J. Biomed. Mater. Res. Part B, 101, 532–540. https://doi.org/10.1002/jbm.b.32853

Pirvanescu, H., Balasoiu, M., Ciurea, M. E., Balasoiu, A. T., & Manescu, R. (2014). Wound infections with multi-drug resistant bacteria. Chirurgia, 109, 73–79.

Praveena, S. M., Han, L. S., Than, L. T. L., & Aris, A. Z. (2016). Preparation and characterisation of silver nanoparticle coated on cellulose paper: evaluation of their potential as antibacterial water filter. J. Exp. Nanosci., 11, 1307–1319. https://doi.org/10.1080/17458080.2016.1209790

Prezotti, F., Cury, B., & Evangelista, R. (2014). Mucoadhesive beads of gellan gum/pectin intended to controlled delivery of drugs. Carbohydr. Polym., 113, 286–295. https://doi.org/10.1016/j.carbpol.2014.07.021

Rabek, J. (1975). Oxidative degradation of polymers. Comprehensive Chemical Kinetics, 14, 425–538. https://doi.org/10.1016/S0069-8040(08)70336-4

Radulescu, M., Andronescu, E., Dolete, G., Popescu, R. C., Fufă, O., Chifiriuc, M. C., Mogoantă, L., Bălşeanu, T. A., Mogoşanu, G. D., Grumezescu, A. M., & Holban, A. M. (2016). Silver nanocoatings for reducing the exogenous microbial colonization of wound dressings. Materials, 9, 1–15. https://doi.org/10.3390/ma9050345

RǍdulescu, M., Holban, A. M., MogoantǍ, L., BǍlşeanu, T. A., Mogoşanu, G. D., Savu, D., Popescu, R. C., FufǍ, O., Grumezescu, A. M., Bezirtzoglou, E., Lazar, V., & Chifiriuc, M. C. (2016). Fabrication, characterization, and evaluation of bionanocomposites based on natural polymers and antibiotics for wound healing applications. Molecules, 21, 2–14. https://doi.org/10.3390/molecules21060761

Rafael, D., Andrade, F., Martinez-trucharte, F., & Basas, J. (2019). Sterilization procedure for temperature-sensitive hydrogels loaded with silver nanoparticles for clinical applications. Nanomaterials, 9, 2–14. https://doi.org/10.3390/nano9030380

Raghavan, D., Zewde, B., Ambaye, A., Stubbs III, J., & Raghavan, D. (2016). A review of stabilized silver nanoparticles – Synthesis, biological properties, characterization, and potential areas of applications. JSM Nanotechnol Nanomed, 4, 1043.

Rai, M., Kon, K., Gade, A., Ingle, A., Nagaonkar, D., Paralikar, P., & Silva, S. (2016). Antibiotic resistance: Can nanoparticles tackle the problem? In Antibiotic Resistance: Mechanisms and New Antimicrobial Approache (pp. 121–143). Elsevier. https://doi.org/10.1016/B978-0-12-803642-6.00006-X

Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27, 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

Rajkumar, K. S., Kanipandian, N., & Thirumurugan, R. (2016). Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl. Nanosci., 6, 19–29. https://doi.org/10.1007/s13204-015-0417-7

Rakhshaei, R., & Namazi, H. (2017). A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater. Sci. Eng. C Mater. Biol. Appl., 73, 456–464. https://doi.org/10.1016/j.msec.2016.12.097

Ramalingam, B., Parandhaman, T., & Das, S. (2016). Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces, 8, 4963–4976. https://doi.org/10.1021/acsami.6b00161

Rezvani, E., Rafferty, A., McGuinness, C., & Kennedy, J. (2019). Adverse effects of nanosilver on human health and the environment. Acta Biomater., 94, 145–159. https://doi.org/10.1016/j.actbio.2019.05.042

Rigo, C., Ferroni, L., Tocco, I., Roman, M., Munivrana, I., Gardin, C., Cairns, W. R. L., Vindigni, V., Azzena, B., Barbante, C., & Zavan, B. (2013). Active silver nanoparticles for wound healing. Int. J. Mol. Sci., 14, 4817–4840. https://doi.org/10.3390/ijms14034817

Rizwan, M., Rubina Gilani, S., Iqbal Durani, A., & Naseem, S. (2021). Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field. J. Adv. Res., 33, 15–40. https://doi.org/10.1016/j.jare.2021.03.007

Rosiak, J., Rucinska-Reybas, A., & Pekala, W. (1989). Method of manufacturing of hydrogels dressing (Patent No. 871). 4.

Rowan, M. P., Cancio, L. C., Elster, E. A., Burmeister, D. M., Rose, L. F., Natesan, S., Chan, R. K., Christy, R. J., & Chung, K. K. (2015). Burn wound healing and treatment: Review and advancements. Crit. Care, 19, 1–12. https://doi.org/10.1186/s13054-015-0961-2

Saleem Khan, M., Jabeen, F., Aziz Qureshi, N., Saleem Asghar, M., Shakeel, M., & Noureen, A. (2015). Toxicity of silver nanoparticles in fish: A critical review. J. Biodivers. Environ. Sci., 6, 211–227. http://www.innspub.net

Sánchez, G. R., Castilla, C. L., Gómez, N. B., García, A., Marcos, R., & Carmona, E. R. (2016). Leaf extract from the endemic plant Peumus boldus as an effective bioproduct for the green synthesis of silver nanoparticles. Mater. Lett., 183, 255–260. https://doi.org/10.1016/j.matlet.2016.07.115

Saravanan, M., Barik, S. K., MubarakAli, D., Prakash, P., & Pugazhendhi, A. (2018). Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog., 116, 221–226. https://doi.org/10.1016/j.micpath.2018.01.038

Serra, R., Grande, R., Butrico, L., Rossi, A., Settimio, U., Caroleo, B., Amato, B., Gallelli, L., & Franciscis, S. (2015). Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti. Infect. Ther., 13, 605–613. https://doi.org/10.1586/14787210.2015.1023291

Sevgi, M., Toklu, A., Vecchio, D., & Hamblin, M. (2013). Topical antimicrobials for burn infections – An update. Recent Pat. Antiinfect. Drug Discov., 8, 161–197. https://doi.org/10.2174/1574891x08666131112143447

Shewan, H. M., & Stokes, J. R. (2013). Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J. Food Eng., 119(4), 781–792. https://doi.org/10.1016/j.jfoodeng.2013.06.046

Shi, G., Chen, W., Zhang, Y., Dai, X., Zhang, X., & Wu, Z. (2019). An antifouling hydrogel containing silver nanoparticles for modulating the therapeutic immune response in chronic wound healing. Langmuir, 35, 1837–1845. https://doi.org/10.1021/acs.langmuir.8b01834

Shin, H. S., Yang, H. J., Kim, S. Bin, & Lee, M. S. (2004). Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J. Colloid Interface Sci., 274, 89–94. https://doi.org/10.1016/j.jcis.2004.02.084

Siddiqi, K. S., & Husen, A. (2016). Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale Res. Lett., 11, 1–15. https://doi.org/10.1186/s11671-016-1311-2

Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G., & Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm., 127, 130–141. https://doi.org/10.1016/j.ejpb.2018.02.022

Sonar, H., Nagaonkar, D., Ingle, A., & Rai, M. (2017). Mycosynthesized silver nanoparticles as potent growth inhibitory agents against selected waterborne human pathogens. Clean - Soil Air Water, 45, 1600247. https://doi.org/10.1002/clen.201600247

Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 275, 177–182. https://doi.org/10.1016/j.jcis.2004.02.012

Song, E. H., Jeong, S. H., Park, J. U., Kim, S., Kim, H. E., & Song, J. (2017). Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing. Mater. Sci. Eng. C, 79, 866–874. https://doi.org/10.1016/j.msec.2017.05.041

Sonker, A. S., 0, R., Pathak, J., 0, R., Kannaujiya, V. K., & Sinha, R. P. (2017). Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. Can. J. Biotech·, 1, 26–37. https://doi.org/10.24870/cjb.2017-000103

Sood, A., Granick, M., & Tomaselli, N. (2014). Wound dressings and comparative effectiveness data. Adv. Wound Care, 3, 511–529. https://doi.org/10.1089/wound.2012.0401

Suman, T. Y., Radhika Rajasree, S. R., Kanchana, A., & Elizabeth, S. B. (2013). Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf. B Biointerfaces, 106, 74–78. https://doi.org/10.1016/j.colsurfb.2013.01.037

Tan, S., Winarto, N., Dosan, R., & Aisyah, P. (2019). The benefits of occlusive dressings in wound healing. Open Dermatol. J., 13, 27–33.

Tippayawat, P., Phromviyo, N., Boueroy, P., & Chompoosor, A. (2016). Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ, 2016, 1–15. https://doi.org/10.7717/peerj.2589

Toh, H., Jurkschat, D., & Compton, R. (2015). The influence of the capping agent on the oxidation of silver nanoparticles: nano‐impacts versus stripping voltammetry. Chem. Eur. J., 21, 2998–3004. https://doi.org/10.1002/chem.201406278

Treenate, P., & Monvisade, P. (2017). In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug. Int. J. Biol. Macromol., 99, 71–78. https://doi.org/10.1016/j.ijbiomac.2017.02.061

Tri Handok, C., Huda, A., & Gulo, F. (2018). Synthesis pathway and powerful antimicrobial properties of silver nanoparticle: A critical review. Asian J. Sci. Res., 12, 1–17. https://doi.org/10.3923/ajsr.2019.1.17

Ullah, F., Othman, M., Javed, F., Ahmad, Z., & Akil, H. (2015). Classification, processing and application of hydrogels: A review. Mater. Sci. Eng., 57, 414–433. https://doi.org/10.1016/j.msec.2015.07.053

Unnithan, A. R., Ghavami Nejad, A., Sasikala, A. R. K., Thomas, R. G., Jeong, Y. Y., Murugesan, P., Nasseri, S., Wu, D., Park, C. H., & Kim, C. S. (2016). Electrospun zwitterionic nanofibers with in situ decelerated epithelialization property for non-adherent and easy removable wound dressing application. Chem. Eng. J., 287, 640–648. https://doi.org/10.1016/j.cej.2015.11.086

Vamanu, E. (2017). Bioactive capacity of some Romanian wild edible mushrooms consumed mainly by local communities. Nat. Prod. Res., 32, 440–443. https://doi.org/10.1080/14786419.2017.1308365

Vanichvattanadecha, C., Supaphol, P., Nagasawa, N., Tamada, M., Tokura, S., Furuike, T., Tamura, H., & Rujiravanit, R. (2010). Effect of gamma radiation on dilute aqueous solutions and thin films of N-succinyl chitosan. Polym. Degrad. Stab., 95, 234–244. https://doi.org/10.1016/j.polymdegradstab.2009.10.007

Varaprasad, K., Mohan, Y., Vimala, K., & Raju, K. (2011). Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J. Appl. Polym. Sci., 121, 784–796. https://doi.org/10.1002/app.33508

Verma, J., Kanoujia, J., Parashar, P., Tripathi, C., & Saraf, S. (2016). Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv. Transl. Res., 7, 77–88. https://doi.org/10.1007/s13346-016-0322-y

Vetten, M., Yah, C., Singh, T., & Gulumian, M. (2014). Challenges facing sterilization and depyrogenation of nanoparticles: Effects on structural stability and biomedical applications. Nanomed.: Nanotechnol. Biol. Med., 10, 1391–1399. https://doi.org/10.1016/j.nano.2014.03.017

Vijayan, S., Koilaparambil, D., George, T. K., & Manakulam Shaikmoideen, J. (2016). Antibacterial and cytotoxicity studies of silver nanoparticles synthesized by endophytic Fusarium Solani Isolated from Withania somenifera (L.). J. Water Environ. Nanotechnol., 1, 91–103. https://doi.org/10.7508/jwent.2016.02.003

Vuković, J., Perić-Grujić, A., Mitić-Ćulafić, D., Nedeljković, B., & Tomić, S. (2020). Antibacterial activity of pH-sensitive silver(I)/poly(2-hydroxyethyl acrylate/itaconic acid) hydrogels. Macromol. Res., 28, 382–389. https://doi.org/10.1007/s13233-020-8050-z

Vyshnava, S. S., Kanderi, D. K., Panjala, S. P., Pandian, K., Bontha, R. R., Goukanapalle, P. K. R., & Banaganapalli, B. (2016). Effect of silver nanoparticles against the formation of biofilm by Pseudomonas aeruginosa an in silico approach. Appl. Biochem. Biotechnol., 180, 426–437. https://doi.org/10.1007/s12010-016-2107-7

Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956

Wang, M., Xu, L., Hu, H., Zhai, M., Peng, J., Nho, Y., Li, J., & Wei, G. (2007). Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nucl. Instrum. Methods Phys. Res. B, 265, 385–389. https://doi.org/10.1016/j.nimb.2007.09.009

Wanzke, C., Tena-Solsona, M., Rieß, B., Tebcharani, L., & Boekhoven, J. (2020). Active droplets in a hydrogel release drugs with a constant and tunable rate. Mater. Horiz., 7, 1397–1403. https://doi.org/10.1039/c9mh01822k

Wichterle, O., & Lím, D. (1960). Hydrophilic gels for biological use. Nature, 185, 117–118. https://doi.org/10.1038/185117a0

Wu, J., Hou, S., Ren, D., & Mather, P. T. (2009). Antimicrobial properties of nanostructured hydrogel webs containing silver. Biomacromolecules, 10, 2686–2693. https://doi.org/10.1021/bm900620w

Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., Chen, X., Wang, Q., & Guo, S. (2014). In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr. Polym., 102, 762–771. https://doi.org/10.1016/j.carbpol.2013.10.093

Yang, K., Han, Q., Chen, B., Zheng, Y., Zhang, K., Li, Q., & Wang, J. (2018). Antimicrobial hydrogels: Promising materials for medical application. Int. J. Nanomed., 13, 2217–2263. https://doi.org/10.2147/IJN.S154748

Yang, Y., Qin, Z., Zeng, W., Yang, T., Cao, Y., Mei, C., & Kuang, Y. (2017). Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol. Rev., 6, 279–289. https://doi.org/10.1515/ntrev-2016-0047

Yao, C. H., Lee, C. Y., Huang, C. H., Chen, Y. S., & Chen, K. Y. (2017). Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. Mater. Sci. Eng. C, 79, 533–540. https://doi.org/10.1016/j.msec.2017.05.076

Ye, S., Jiang, L., Wu, J., Su, C., Huang, C., Liu, X., & Shao, W. (2018). Flexible amoxicillin-grafted bacterial cellulose Sponges for wound dressing: In vitro and in vivo evaluation. ACS Appl. Mater. Interfaces, 10, 5862–5870. https://doi.org/10.1021/acsami.7b16680

Yeo, Y., Baek, N., & Park, K. (2001). Microencapsulation methods for delivery of protein drugs. Biotechnol. Bioprocess Eng., 6, 213–230.

Yu, S.-J., Yin, Y.-G., & Liu, J.-F. (2013). Silver nanoparticles in the environment. Environ. Sci.: Process. Impacts, 15, 78–92. https://doi.org/10.1039/C2EM30595J

Yuan, Z., Li, J., Cui, L., Xu, B., Zhang, H., & Yu, C. P. (2013). Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere, 90, 1404–1411. https://doi.org/10.1016/j.chemosphere.2012.08.032

Zain, N. M., Stapley, A. G. F., & Shama, G. (2014). Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr. Polym., 112, 195–202. https://doi.org/10.1016/j.carbpol.2014.05.081

Zajko, Š., & Klimant, I. (2013). The effects of different sterilization procedures on the optical polymer oxygen sensors. Sens. Actuators B: Chem., 177, 86–93. https://doi.org/10.1016/j.snb.2012.10.040

Zhang, J., Chaker, M., & Ma, D. (2017). Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J. Colloid Interface Sci., 489, 138–149. https://doi.org/10.1016/j.jcis.2016.07.050

Zhang, L., Yin, H., Lei, X., Lau, J. N. Y., Yuan, M., Wang, X., Zhang, F., Zhou, F., Qi, S., Shu, B., & Wu, J. (2019). A Systematic review and meta-analysis of clinical effectiveness and safety of hydrogel dressings in the management of skin wounds. Front. Bioeng. Biotechnol., 7, 1–16. https://doi.org/10.3389/fbioe.2019.00342

Zhang, P., Zou, B., Liou, Y. C., & Huang, C. (2021). The pathogenesis and diagnosis of sepsis post burn injury. Burns Trauma, 9, 1–16. https://doi.org/10.1093/burnst/tkaa047

Zhang, T., Wang, L., Chen, Q., & Chen, C. (2014). Cytotoxic potential of silver nanoparticles. Yonsei Med. J., 55, 283–291. https://doi.org/10.3349/ymj.2014.55.2.283

Zhang, X. F., Shen, W., & Gurunathan, S. (2016). Silver nanoparticle-mediated cellular responses in various cell lines: An in vitro model. Int. J. Mol. Sci., 17, 1–26. https://doi.org/10.3390/ijms17101603

Zhang, Y. S., & Khademhosseini, A. (2017). Advances in engineering hydrogels. Science, 356, 1–10. https://doi.org/10.1126/science.aaf3627

Zou, P., Lee, W. H., Gao, Z., Qin, D., Wang, Y., Liu, J., Sun, T., & Gao, Y. (2020). Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles. Carbohydr. Polym., 232, 115786. https://doi.org/10.1016/j.carbpol.2019.115786

Downloads

Publicado

18/09/2022

Como Citar

GOULART, D. B. O uso de hidrogel de prata no tratamento de feridas como alternativa para reduzir patógenos resistentes a antibióticos. Research, Society and Development, [S. l.], v. 11, n. 12, p. e387111234849, 2022. DOI: 10.33448/rsd-v11i12.34849. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34849. Acesso em: 26 nov. 2024.

Edição

Seção

Ciências da Saúde