Anodização de Titânio em Psidium Guajava
DOI:
https://doi.org/10.33448/rsd-v11i12.34953Palavras-chave:
Titânio; Anodização; Implantes; Corrosão; Psidium guajava.Resumo
A Psidium guajava, comumente conhecida como ‘goiaba’, pertence à família das Myrtaceae e é uma alternativa ao uso dos métodos tradicionais de inibição de corrosão. O objetivo deste estudo é anodizar titânio em um eletrólito ambientalmente correto de Psidium guajava a fim de melhorar seu desempenho anticorrosivo. Para tanto, amostras de titânio CP (comercialmente puro) grau 2 foram anodizadas em extrato vegetal a base de Psidium guajava, com variação dos transientes de densidade de corrente (1 e 0,1 mA/cm²) e tempo (5, 30 e 60 min). As amostras foram caracterizadas quanto à morfologia por análises em MEV (Microscopia Eletrônica de Varredura). A hidrofobicidade dos óxidos foi avaliada pelo método da gota séssil. As amostras anodizadas foram analisadas em relação à colorimetria pelo método CIE L*a*b* e o eletrólito a base de Psidium guajava foi analisado por UV-Vis e por voltametria cíclica, com a finalidade de entender os compostos e seus comportamentos no processo de anodização. Dos resultados obtidos, os óxidos gerados por anodização na densidade de corrente de 0,1 mA/cm² foram os que apresentaram melhor desempenho. Os resultados obtidos em 5 e 30 minutos de anodização apresentaram resultados muito semelhantes e maior reprodutibilidade em comparação aos demais analisados e que evidenciou a formação de camada óxida do tipo barreira nas amostras. No eletrólito de Psidium guajava, foi evidenciado a presença de grupos fenólicos em sua composição, o que se acredita que influenciam no processo de formação da camada óxida no processo de anodização.
Referências
Alves, A. K. (2008). Obtenção de micro e nanofibras de TiO2 por eletrospinning: caracterização de propriedades e atividade fotocatalítica. Tese (Doutorado) - Escola de Engenharia. Programa de Pós-Graduação em Engenharia Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul. Porto Alegre, 136f.
Amorim, A., Comunian, C. R., Neto, M. D. F., & Cruz, E. F. (2019). Implantodontia: Histórico, evolução e atualidades/Implantology: History, Evolution and News. Revista de psicologia, 13(45), p. 36-48.
Catauro, M., Bollino, F., Papale, F., Giovanardi, R., & Veronesi, P. (2014). Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants. Materials Science and Engineering: C, 43, p. 375-382.
Chen, J., Wang, J., & Yuan, H. (2013). Morphology and performances of the anodic oxide films on Ti6Al4V alloy formed in alkaline-silicate electrolyte with aminopropyl silane addition under low potential, Applied Surface Science, 284, p. 900–906.
Fadl-Allah, S. A., & Mohsen, Q. (2010). Characterization of native and anodic oxide films formed on commercial pure titanium using electrochemical properties and morphology techniques. Applied Surface Science, 256(20), p. 5849-5855.
Fernandes, M., Kunst, S. R., Morisso, F. D. P., Carús, L.A., Ziulkoski, A. L., & Oliveira, C. T. (2022). Inserção de nanocargas de prata em superfície de titânio anodizado. Research, Society and Development, 11, p. e13711729690.
Fuhr, L. T., Moura, A. B. D., Carone, C. L. P., Morisso, F. D. P., Scheffel, L. F., Kunst, S. R., Ferreira, J. Z., & Oliveira, C. T. (2020). Colored anodizing of titanium with pyroligneous solutions of black wattle. Matéria (Rio de Janeiro), 25(2), p. 12658.
Galan, J. R., Viera, J., & Namen R. M. (2013). Caracterização das superfícies de implantes dentais comerciais em MEV/ED. Revista Brasileira de Odontologia, 70(1), p. 68.
Gama, R. O. (2014). Controle do comportamento hidrofílico/hidrofóbico de polímeros naturais biodegradáveis através da decoração de superfícies com nano e microcomponentes. Tese (Doutorado) - Curso de Engenharia Metalúrgica, Materiais e de Minas, Universidade Federal de Minas Gerais, Belo Horizonte, 110 f.
Hsueh, Y. H., Cheng, C. Y., Chien, H. W, Huang, X. H, Huang, C. W., Wu, C. H., Chen, S. T., & Ou, S. F. (2020). Synergistic effects of collagen and silver on the deposition characteristics, antibacterial ability, and cytocompatibility of a collagen/silver coating on titanium. Journal of Alloys and Compounds, 830, p. 15-25.
Indira, K., Mudali, U. K., Nishimura, T., & Rajendran, N. (2015). A Review on TiO2 Nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of Bio-and Tribo-Corrosion, 1(4), p. 127-134.
Kociubczyk, A. I., Vera, M. L., Schvezov, C. E., Heredia, E., & Ares, A. E. (2015). TiO2 coatings in alkaline electrolytes using anodic oxidation technique. Procedia Materials Science, 8, p. 65-72.
Kunst, S. R., Cerveira, D. O., Ferreira, J. Z., Graef, T. F., Santana, J. A., Carone, C. L. P., Morisso, F. D. P., & Oliveira, C. T. (2021). Influence of simulated body fluid (normal and inflammatory) on corrosion resistance of anodized titanium. Research, society and development, 10, p. e122101018606.
Kuromoto, N. K., Simão, R. A., & Soares, G. A. (2007). Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages. Materials Characterization, 58(2), p. 114-121.
Lee, W., Scholz, R., & Gösele, U. A. (2008). Continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. Nanoletters, 8(8), p. 2155-2160.
Liu, Z., Liu, H., Zhong, X., Hashimoto, T., Thompson, G. E., & Skeldon, P. (2014). Characterization of anodic oxide growth on commercially pure titanium in NaTESi electrolyte. Surface and Coatings Technology, 258, p. 1025-1031.
Marcus, P., & Maurice, V. (2000). Passivity of metals and alloys. Material Science and Technology. Wiley-VCH Verlang GmbH & Co KGaA.
Mueller, L. P., Fleck, J. D., Fuhr, L. T., Caroni, C. L. P., & Kunst, S. R. (2019). Emprego de extrato de Psiduum guajava como eletrólito e processo de obtenção. Patente BR 10 2019 027581 2 em 20 de dezembro de 2019.
Nakajima, M., Miura, Y., Fushimi, k., & Habazaki, H. (2009). Spark anodizing behaviour of titanium and its alloys in alkaline aluminate electrolyte. Corrosion Science, 51(7), p. 1534-1539.
Naseer, S., Hussain, S., Naeem, N., et al. (2018). The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience, 4(32), p. 1.
Ohtsuka, T., & Otsuki, T. (1998). The influence of the growth rate on the semiconductive properties of titanium anodic oxide films. Corrosion Science, 40(6), p. 951-958.
Ory, F., Fraysse, J. L. (2018). Titanium and titanium alloys: Materials, review of processes for orthopedics and a focus on a proprietary approach to producing cannulated bars for screws and nails for trauma. Titanium in Medical and Dental Applications. 65-91, p. 303-324.
Ouafy, T., Chtaini A., Oulfajrite, H., & Najih R. (2014). Electrochemical determination of phenol at natural phosphate modified carbon paste electrode. Leonardo Electronic Journal of Practices and Technologies, 25, p. 166-178.
Parra, B. S., Gennari, R. C., Melchiades, F. G., & Boschi, A. O. (2006). Rugosidade superficial de revestimentos cerâmicos. Cerâmica industrial, 11(2), p.15-18.
Prodócimo, K. E. (2008). Estudo da modificação superficial por ataque químico em chapas de aço inoxidável AISI 430, visando à adesão de revestimentos poliméricos. Trabalho de Conclusão de Curso - Graduação em Engenharia de Materiais - Universidade Federal de Santa Catarina, Florianópolis.
Quintero, D., Galvis, O., Calderón, J. A., et al. (2014). Effect of electrochemical parameters on the formation of anodic films on commercially pure titanium by plasma electrolytic oxidation ‖. Surface and Coatings Technology, 258, p. 1223-1231.
Rahman, Z. U., Haider, W., Pompa, L., & Deen, K. M. (2016). Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys. Materials Science and Engineering: C, 58, p. 160-168.
Raja, K. S., Misra, M., & Paramguru, K. (2005). Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochimica Acta, 51, p. 154–165.
Ribeiro Filho, S. L. M., Lauro, C. H., Bueno, A. H. S., et al. (2016). Influence cutting parameters on the surface quality and corrosion behavior of Ti-6Al-4V alloy in synthetic body environment (SBF) using Response Surface Method. Measurement, 88, p. 223–237.
Salvador, D. G., Marcolin, P., Beltrami, L. V. R., Brandalise, R. N., & Kunst, S. R. (2017). Influence of the pretreatment and curing of alkoxysilanes on the protection of the titanium-aluminum-vanadium alloy. Journal of Applied Polymer Science, 134(46), p. 45470.
Saurabh, A., Meghana, C. M., Singh, P. K., & Verma, P. C. (2022). Titanium-based materials: synthesis, properties, and applications. Materials Today: Proceedings, 56 (1), p. 412-419.
Serafim, J. (2013). Avaliação do Pré Tratamento a base de sulfossiloxano sobre aço galvannealed combinado com tintas anticorrosivas. Dissertação de Mestrado - Escola Politécnica da Universidade de São Paulo, São Paulo, 106 f.
Somchaidee, P., & Tedsree, k. (2018). Green synthesis of high dispersion and narrow size distribution of zero-valent iron nanoparticles using guava leaf (Psidium guajava L) extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, p. 035006.
Sul, Y. (2001). The electrochemical oxide growth behavior on titanium in acid and alkaline electrolytes. Medical Engineering and Physics, 23(1), p.329-346.
Umoren, S., Solomon, M., Obot, I., & Sulieman, R. (2019). A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals. Journal of Industrial and Engineering Chemistry, 76(25), p. 91-115.
Vermesse, E., Mabru, C., & Arurault, L. (2013). Applied Surface Science Surface integrity after pickling and anodization of Ti – 6Al – 4V titanium alloy. Applied Surface Science, 285, p. 629–637.
Verma, R. P. (2020). Titanium based biomaterial for bone implants: a mini review. Materials Today: Proceedings, 26, p. 3148-3151.
Xing, J., Xia, Z., Hu, J., Zhang, Y., & Zhong, L. (2013). Time dependence of growth and crystallization of anodic titanium oxide films in potentiostatic mode. Corrosion Science, 75, p. 212–219.
Young, L., Dell'oca, C. J., & Pulfrey, D. L. (1971). Anodic oxide films. Physics of thin films. Elsevier, p. 1-79.
Zaniolo, K. M., Biaggio, S. R., Bocchi, N., & Rocha-Filho, R. C. (2018). Properties of colored oxide films formed electrochemically on titanium in green electrolytes under ultrasonic stirring. Journal of Materials Science, 53(10), p. 7294-7304.
Zaniolo, K. M. (2015). Crescimento Anódico e caracterização de óxidos de titânio em eletrólitos alternativos. Dissertação (Mestrado em Química) – Programa de Pós-Graduação em Química. Universidade Federal de São Carlos -UFSCar), São Carlos, 136 f.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 David de Oliveira Cerveira; Sandra Raquel Kunst; Luã Tainachi Mueller ; Fernando Dal Pont Morisso; Ana Luiza Ziulkoski; Roberto Cauduro; Cláudia Trindade Oliveira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.