Alternativas e estratégias de baixo custo para o controle de patógenos em sementes de feijão: uma revisão
DOI:
https://doi.org/10.33448/rsd-v11i15.36938Palavras-chave:
Phaseolus vulgaris L.; Doença de sementes; Práticas de manejo; Sanidade.Resumo
Patógenos de sementes comprometem a produção de feijão. O tratamento de sementes é usado para mitigar a incidência e os danos dos patógenos; entretanto, as formas de controle devem ser eficientes e seguras. Dessa forma, o objetivo deste trabalho é discutir os controles de patógenos em sementes de feijão utilizando diferentes tratamentos e identificamos as tecnologias estudadas para esses fins. Esta revisão avaliou artigos que utilizaram diferentes estratégias para controlar o patógeno de sementes de feijão. Existem classificações de tratamento, em que os produtos químicos sintéticos são os mais eficientes, mas, representam risco à saúde humana, aos animais e ao meio ambiente. No entanto, soluções alternativas e complementares para o controle desses microrganismos têm sido buscadas no controle físico, natural e biológico. Dos estudos avaliados, 35,29% utilizaram controle biológico, 17,65% utilizaram controle com agentes naturais, 11,76% utilizaram controle físico e os demais corresponderam a 5,88% cada. 72,22% estão relacionados ao controle de patógenos fúngicos, 16,67% ao controle de bactérias e apenas 11,11% ao vírus. 94,12% foram eficazes e apenas 5,88% não tiveram sucesso no controle. Os tratamentos alternativos que são eficientes contra patógenos associados a sementes de feijão que podem servir como uma ferramenta alternativa para o manejo de doenças de plantas e tratamento de sementes.
Referências
Adhikari, B., Pangomm, K., Veerana, M., Mitra, S., & Park, G. (2020) Plant Disease Control by NonThermal Atmospheric-Pressure Plasma. Frontiers in Plant Science, 11,77. https://doi.org/10.3389/fpls.2020.00077
Ahmad, A., Sripong, K., Uthairatanakij, A., Photchanachai, S., Pankasemsuk, T., DOI:Jitareerat, P. (2022) Decontamination of seed borne disease in pepper (Capsicum annuum L.) seed and the enhancement of seed quality by the emulated plasma technology. Scientia Horticulturae, 291, 110568. https://doi.org/10.1016/j.scienta.2021.110568
Almeida, A.B., Silva, I. C., Souza, C.A.F., Avelino, J.R.L., Santos, J.E.C.C., Medeiros, E.V., & Pinto, K.M.S. (2021). Plant extract as a strategy for the management of seed pathogens: a critical review. Research, Society and Development, 10(14). http://dx.doi.org/10.33448/rsd-v10i14.21846
Amza, J. (2018). Seed Borne Fungi; Food Spoilage, Negative Impact and Their Management: A Review. Food Science and Quality Management, v.81. https://iiste.org/Journals/index.php/FSQM/article/view/44999/46441
Andrade, E.K.V.A., Rodrigues, R., Bard, G.C.V.B., Pereira, L.S., Baptista, K.E.V., Cavalcanti, T.F.M., Oliveira, A.E.A., Souza,T.A.M., & Gomes, V.M. (2020). Identification, biochemical characterization and biological role of defense proteins from common bean genotypes seeds in response to Callosobruchus maculatus infestation.. Journal of Stored Products Research, v. 87. https://doi.org/10.1016/j.jspr.2020.101580
Arefin, M. N., Bhuiyan, M. K. A., Tanbir, R. M. (2019). Integrated use of fungicide, plant extract and bio-agent for management of alternaria blight disease of radish (Raphanus sativus L.) and quality seed production. Agricultural & Veterinary Sciences, 3(1),10–21. https://www.researchgate.net/publication/332130639>
Ashwini, N., & Srividya, N. (2014)). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. Biotech, 4, 127–136. 10.1007/s13205-013-0134-4
Avramidis, G., Stuwe, B., Wascher, R., Bellmann, M., Wieneke, S., Tiedemann, A.V., & Viöl, W. (2010). Fungicidal effects of an atmospheric pressure gas discharge and degradation mechanisms. Surface & Coatings Technology, 205, S405–S408. https://doi.org/10.1016/j.surfcoat.2010.08.141
Babalola, O.O. (2010). Beneficial bacteria of agricultural importance. Biotechnol Lett, 32,1559-1570. 10.1007/s10529-010-0347-0
Baibakova, E., Nefedjeva, E.E., Suska-Malawska, M., Wilk, M., Sevriukova, G.A., & Zheltobriukhov, V.F. (2019). Modern Fungicides: Mechanisms of Action, Fungal Resistance and Phytotoxic Effects. Annual Research & Review in Biology, 32(3), 1-16. 10.9734/arrb/2019/v32i330083
Balba, H. (2007). Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, 42(4), 441–451. https://doi.org/10.1080/03601230701316465
Bartlett, D., Clough, J.M., Godwin, J. R., Hall, A.A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649 - 662. https://doi.org/10.1002/ps.520
Bisen, K., Keswani, C., Mishra, S., Saxena, A., & Singh, H.B. (2015). Unrealized Potential of Seed Biopriming for Versatile Agriculture. Agricultural Sciences,192-206. 10.1007/978-81-322-2169-2_13
Borba, M.C., Freitas, M.B., & Stadnik, M.J. (2019). Ulvan enhances seedling emergence and reduces Fusarium wiltseverity in common bean (Phaseolus vulgaris L.). Crop Protection, 118, 66-71. https://doi.org/10.1016/j.cropro.2018.12.014
Campos, M.L., Souza, C.M.., Oliveira, K.B.S., Dias, S.C., & Franco, O.L. (2018). The role of antimicrobial peptides in plant immunity. Journal of Experimental Botany. v. 69, 4997-5011. https://doi.org/10.1093/jxb/ery294
Cardillo, B.E.S., Oliveira, D.P., Soares, B.L., Martins, F.A.D., Rufini, M., Silva, J.S., Neto, G.G.F., Andrade, M.J.B., & Moreira, F.M.S. (2019). Nodulation and Yields of Common Bean are Not Affected Either by Fungicides or by the Method of Inoculation. Agronomy Journal, v.111, ed.2. https://doi.org/10.2134/agronj2018.06.0389
Carvalho, D.D.C., Junior, M.L., Martins, I., Inglis, P.W., & Mello, S.C.M. (2014). Biological control of Fusarium oxysporum f. sp. phaseoli by Trichoderma harzianum and its use for common bean seed treatment. Tropical Plant Pathology, 39, 384-391. https://doi.or/10.1590/S1982-56762014000500005
Chen, N.W.G., Ruh, M., Darrasse, A., Foucher, J., Briand, M., Costa, J., Studholme, D., Jacques, M.A. (2021). Common bacterial blight of bean: a model of seed transmission and pathological convergence. Molecular Plant Pathology, 1-17. https://bsppjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/mpp.13067
Chrapaciené, S., Rasiukeviciuté, N., Valiuškaité, A. Control of Seed-Borne Fungi by Selected Essential Oils. Horticulturae, 8, 220, 2022. https://doi.org/10.3390/horticulturae8030220
Christensen, C.M., & Kaufmann, H.H. (1965). Deterioration of stored grains by fungi. Annual Review of Phytopathology, 3 (1), 69–84. https://doi.org/10.1146/annurev.py.03.090165.000441
Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12,564-582. https://journals.asm.org/doi/10.1128/CMR.12.4.564
Darrasse, A., Barret, M., Cesbron, S., Compant, S., Jacques, M.A. (2018). Niches and routes of transmission of Xanthomonas citri pv. fuscans to bean seeds. Plant Soil, v. 422, 115–128. https://link.springer.com/content/pdf/10.1007/s11104-017-3329-3.pdf
Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R. R., & ANNAPURE, U. S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control, v.77, 187–191.https://doi.org/10.1016/j.foodcont.2017.02.019
Dongmo, A.N., Nguefack, J., Dongmo, J.B.L. Fouelefack, F.R., Azah, R.U., Nkengfack, E.A., Stefani, E. Chemical characterization of an aqueous extract and the essential oil of Tithonia diversifolia and their biocontrol activity against seed-borne pathogens of rice. Journal of Plant Diseases and Protection, 128, 703–713, 2021.https://doi.org/10.1007/s41348-021-00439-w
Eke, P., Adamou, S., Fokom, R., Nya, V. D., Fokou, P.V.T., Wakam, L.N., Nwaga, D., Boyom, F.F. (2020). Arbuscular mycorrhizal fungi alter antifungal potential of lemongrassessential oil against Fusarium solani,causing root rot in common bean (Phaseolus vulgaris L.). Heliyon, 6. e05737. https://doi.org/10.1016/j.heliyon.2020.e05737
El-benawy, N.M., Abdel-Fattah, G.M., Ghoneem, K.M., & Shabana, Y. M. (2020). Antimicrobial activities of Trichoderma atroviride against common bean seed-borne Macrophomina phaseolina and Rhizoctonia solani. Egyptian Journal of Basic and Applied Sciences, 7(1), 267-280. https://doi.org/10.1080/2314808X.2020.1809849
El-gali, Z.I. (2018). Evaluation of Some Plant Extracts and Powders in Control of Bean Damping-Off By Sclerotinia Sclerotiorum. Agriculture and Food Sciences Research, 5(1), 47-51. 10.20448/journal.512.2018.51.47.51
El-koly, R., El-Samadesy., A.M., Helalia, A.A., & Hassuba, M. (2021). Efficacy of several chemical fungicides and biofungicides for controlling damping-off and root rot diseases in common bean under field conditions. Journal of Agricultural Research, 46(2), 29-42. https://www.researchgate.net/publication/352063864_Efficacy_of_certain_chemical_fungicides_and_biofungicides_on_early_blight_disease_in_tomato_under_field_conditions
El-Mohamedy, R.S.R.. El-Mohamedy, F., Abdel-kader, A.B.D., El-Kareem., N.S.; & El-Mougy. (2013). Inhibitory effect of antagonistic bioagents and chitosan on the growth of tomato root rot pathogens In vitro. Journal of Agricultural Technology, 9 (6), 1521-1533. http://www.ijat aatsea.com/pdf/v9_n6_13_November/15_IJAT_2013_9(6)_Plant%20Pathology_Riad%20S.R.%20El-Mohamedy_paper2.pdf
Elsharkawy, M. M., & El-Sawy, M.M. (2019). Potential of Pseudomonas putida F1 to manage Bean common mosaic virus of bean. African J. Biol. Sci., v.15 (1), 201-210. 10.21608/AJBS.2019.68228
Elsharkawy, M.M.; & El-Sawy, M.M. (2015). Control of Bean common mosaic virus by plant extracts in bean plants. International Journal of Pest Management, 61(1), 54-59. https://doi.org/10.1080/09670874.2014.990947
Fernandes, M.F.R., Ribeiro, T.G., Rouws, J.R., Soares, L.H.B., & Zilli, J.E. (2021). Biotechnological potential of bacteria from genera Bacillus paraburkholderia and Pseudomonas to control seed fungal pathogens. Brazilian Journal of Microbiology, 52, 705–714. https://doi.org/10.1007/s42770-021-00448-9
Ferreira, F.V., & Musumeci, M.A. (2021) Trichoderma as biological control agent: scope and prospects to improve efcacy. World Journal of Microbiology and Biotechnology ,37,90. https://doi.org/10.1007/s11274-021-03058-7
Friesen, A.P., Conner, R.L., Robinson, D.E., Barton, W.R., & Gillard, C.L. (2014). Effect of microwave radiation on dry bean seed infected with Colletotrichum lindemuthianum with and without the use of chemical seed treatment. Can. J. Plant Sci, v.94. https://doi.org/10.4141/cjps-2014-035
Friesen, A.P., Conner, R.L., Robinson, D.E., Barton, W.R., & Gillard, C.L. (2014). Effect of microwave radiation on dry bean seed infected with Xanthomonas axonopodis pv. phaseoli with and without the use of chemical seed treatment. Crop Protection, 65, 77-85. https://doi.org/10.1016/j.cropro.2014.07.007
Gaur, A., Kumar, A., Kiran, R., & Kumari, P. (2020). Importance of Seed-Borne Diseases of Agricultural Crops: Economic Losses and Impact on Society. In: Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management (sds) Kumar, R.; Gupta, A. Springer, .3-24. 10.1007/978-981-32-9046-4_1
Gillard, C. L., & Ranatunga, N. K. (2013). Interaction between seed treatments, surfactants and foliar fungicides on controlling dry bean anthracnose (Colletotrichum lindemuthianum). Crop Protection, v.45, 22-28. https://doi.org/10.1016/j.cropro.2012.11.019
Gillard, C.L., Ranatung, N.K., & Conner, R.L. (2012). The control of dry bean anthracnose through seed treatment and the correct application timing of foliar fungicides. Crop Protection, v. 37, 81-90. https://doi.org/10.1016/j.cropro.2012.02.009
Goggi, A.S. (2011). Evolution, purpose and advantages of seed treatments. III seed congress of the Americas, Santiago, Chile, 27–29.
Guragain, R.P., Baniya, H.B., Pradhan, S.P., Dhungana, S., Chhetri, G.K., Sedhai, B., Basnet, N., Panta, G.P., Joshi, U.M., Pandey, B.P., & Subedi, D.P. (2021). Impact of non-thermal plasma treatment on the seed germination and seedling development of carrot (Daucus carota sativus L.). Journal of Physics Communications. 5, 125011. https://iopscience.iop.org/article/10.1088/2399-6528/ac4081
Han, L., Patil, S., Boehm, D., Milosavjević, V.M., Cullen, P.J., & Bouke, P. (2016). Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. American Society for Microbiology Applied and Environmental Microbiology, v.82, 450-458. https://doi.org/10.1128/AEM.02660-15
Hasan, M.F., Islam, M.A., Sikdar, B. (2020). Evaluation of possible biological control of Fusarium sp. using plant extracts and antagonistic species of microbes in vitro. Eur. PMC Plus, v.9, 1394. https://f1000research.com/articles/9-1394
Hitaj, C., Smith, D.J., Code, A.,Wechsler, S., Esker, P.D., & Douglas, M.R. (2020). Sowing Uncertainty: What We Do and Don’t Know about the Planting of Pesticide-Treated Seed. BioScience, v. 70.https://doi.org/10.1093/biosci/biaa019
Hussain, S., Ajaib, M., Asghar, R., Ali, I., Siddiqui, M.F. (2020). Mycoflora associated with Phaseolus vulgaris L. seeds and its impact on seed germination in Azad Jammu & Kashmir. Pakistan Journal of Botany. 52(4), 1455-1463. 10.30848/PJB2020-4(37)
Ishizuka, M.S., Castro, R.R.L., Moraes, M.H.D., & Menten, J.O.M. (2020). Effect of chemical and biological seed treatments on common bean seeds inoculated with Fusarium oxysporum f. sp. phaseoli. Arq. Inst. Biol., 87, 1-10. https://doi.org/10.1590/1808-1657000702018
Jiménez-Reyes, M.F. Carrasco, H. Olea, A.F. Silva-Moreno, E. Natural compounds: a sustainable alternative to the phytopathogens control. Journal of the Chilean Chemical Society, 64(2), 2019.http://dx.doi.org/10.4067/S0717-97072019000204459
Jo, Y.K., Cho, J., Tsai, T.C., Staack, D., Kang, M.H., Roh, J.H., Shin, D.B., Cromwell, W., & Gross, D. (2014). A Non-thermal Plasma Seed Treatment Method for Management of a Seedborne Fungal Pathogen on Rice Seed. Crop Science, 54, 2, 796-803. https://doi.org/10.2135/cropsci2013.05.0331
Kalantari, S., Marefat, A., Naseri, B., & Hemmati, R. (2018). Improvement of bean yield and Fusarium root rot biocontrol using mixtures of Bacillus, Pseudomonas and Rhizobium. Tropical Plant Pathology, 43, 499–505. 5. https://doi.org/10.1007/s40858-018-0252-y
Kalemba, E. M., Wawrzyniak, M. K., Suszka, J., & Chmielarz, P. (2021). Thermotherapy and Storage Temperature Manipulations Limit the Production of Reactive Oxygen Species in Stored Pedunculate Oak Acorns. Forests, v.12. https://doi.org/10.3390/f12101338
Kaur, S.I., Kashyap, P.L., Kang, S.S., & Sharma, A. (2020). Detection and Diagnosis of Seed-Borne Viruses and Virus-Like Pathogens. In: Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management (sds) Kumar, R.; Gupta, A. Springer, 169-200.2020. 10.1007/978-981-32-9046-4_7
Köhl, J., Kolnnar, R., & Ravensberg, W.J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy . Frontiers in Plant Science, v.10. https://doi.org/10.3389/fpls.2019.00845
Kopacki, M., Pawlat, J., Terebun, P., Kwiatkowski, M., Starek, A., & Kiczorowski, P. (2017). Efficacy of Non-thermal Plasma Fumigation to Control Fungi Occurring on Onion Seeds. International Conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Applications of Superconductors (ELMECO & AoS), 1-4, 10.1109/ELMECO.2017.8267746
Kumar, R., & Gupta, A. (2020). Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management.Springer Nature Singapore Pte Ltd. https://link.springer.com/book/10.1007/978-981-32-9046-4
Los, F.G.B.; Zielinski, A.A.F.; Wojeicchowski, J.P.; Nogueira, A.; & Demiate, I.M. (2018). Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Food Current Opinion in Food Science, v.19, 63-71. https://doi.org/10.1016/j.cofs.2018.01.010
Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24, 853–863. https://doi.org/10.1016/j.cropro.2005.01.011
Mancini, V.; & Romanazzi, G. (2013). Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Management Science, v.70, 860-868. https://doi.org/10.1002/ps.3693
Mardani-Mehrabad, H., Rakhshandehroo, F., Shahbazi, S., & Shahraeen, N. (2020). Enhanced tolerance to seed-borne infection of bean common mosaic virus in salicylic acid treated bean plant. Archives of Phytopathology and Plant Protection. v.54, ed.8, 388-410 https://doi.org/10.1080/03235408.2020.1834320
Marquez, N., Giachero, M.L., Declerck, S., & Ducasse, D.A. (2021). Macrophomina phaseolina: General Characteristics of Pathogenicity and Methods of Control. Front Plant Sci. v. 12. https://doi.org/10.3389/fpls.2021.634397
Martins, S.A., Schurt, D.A., Seabra, S.S., Martis, S.J., Ramalho, M.A.P., Moreira, F.M.S., Silva, J.C.P.S., Silva, A.G.S.; & Medeiros, F.H.V. (2018). Common bean (Phaseolus vulgaris L.) growth promotion and biocontrol by rhizobacteria under Rhizoctonia solani suppressive and conducive soils. Applied Soil Ecology, v. 127, 129–135. https://doi.org/10.1016/j.apsoil.2018.03.007
Martins, S.J., Faria, A.F., Pedroso, M.P., Cunha, M.G., Rocha, M.R., Medeiros, F.H.V. (2019). Microbial volatiles organic compounds control anthracnose (Colletotrichum lindemuthianum) in common bean (Phaseolus vulgaris L.). Biological Control, v.131, 36-42. https://doi.org/10.1016/j.biocontrol.2019.01.003
Masangwa, J. I. G., Kritzinger, Q., Aveling, T. A. S. (2017). Germination and seedling emergence responses of common bean and cowpea to plant extract seed treatments. Journal of Agricultural Science, 155(1), 18–31. https://doi.org/10.1017/S0021859616000113
Matic, S., Spadaro, D., Garibaldi, A., Gullino, M.L. (2014). Antagonistic yeasts and thermotherapy as seed treatments to control Fusarium fujikuroi on rice. Biological Control, v.73, 59-67.https://doi.org/10.1016/j.biocontrol.2014.03.008
Mayo-Prieto, S., Campelo, M.P., Lorenzana, A., Rodriguez-González, A., Reinoso, B., Gutiérrez, S., Casquero, P.A. (2020). Antifungal activity and bean growth promotion of Trichoderma strains isolated from seed vs soil. Eur J Plant Pathol, v.158, 817–828. https://10.1007/s10658-020-02069-8
Mcmullen, M.P., Lamey, H.A. (2000). Seed Treatment for Disease Control, NDSU,pp. 447.
Meziadi, C., Blanchet, S., Geffroy, V., Pflieger, S. (2017). Genetic resistance against viruses in Phaseolus vulgaris L.: State of the art and future prospects. Plant Science, v.265, 39-50. https://doi.org/10.1016/j.plantsci.2017.08.009
Meziadi, C., Richard, M.M.S., Derquennes, A., Thareau, V., Blanchet, S., Gratias, A., Pflieger, S., Geffroy. (2016). Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Science, v.242, 351-357. https://doi.org/10.1016/j.plantsci.2015.09.006
Mildaziene, V., Ivamkov, A., Sera, B., Baniulis, D. (2022). Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants, 11, 856. https://doi.org/10.3390/plants11070856
Naqvi, S.D.Y., Rehman, N. (2013). Intensity of seed-bome fungi in fam saved seed of oil and cereals. LAP LAMBERT Academic Publishing.
Naseri, B., Hemmati, R. (2017). Bean root rot management: Recommendations based on an integrated approach for plant disease control. Rhizosphere, v.4, 48-53. https://doi.org/10.1016/j.rhisph.2017.07.001
Nawrot, R., Barylski, J., Nowicki, G., Broniarczyk, J., Buchwald, W., Gozdzicka-Jozefiak, A. Plant antimicrobial peptides. Folia Microbiol. v.59,181-196. 10.1007/s12223-013-0280-4
Nzungize, J.R., Lyumugabe, F., Busogoro, J.P., Baudin, J.P. (2012). Pythium root rot of common bean: biology and control methods. A review. Biotechnol. Agron. Soc. Environ, v.16(3), 405-413. https://popups.uliege.be/1780-4507/index.php?id=16974&file=1&pid=9019
Oerke, E.C. (2006). Crop losses to pests. Journal of Agricultural Science, v.144, 31–43. https://doi.org/10.1017/S0021859605005708
Oliveira, D. P., Figueiredo, M. A., Soares, B.L., Teixeira, O.H.S., Martins, F.A.D., Rufini, M., Morais, A.R., Moreira, F.M.S., Andrade, M.J.B. (2016). Seed Treatment with Fungicides Does Not Affect Symbiosis between Common Bean and Rhizobia. Agronomy Journal, v. 108, ed.5. https://doi.org/10.2134/agronj2016.02.0105
Oliver, R. P., Hewitt, H. G.(2014). Fungicides in Crop Protection. 2ª ed. CABI, Boston, MA , p. 190.
Pérez-Pizá, M. C., Prevosto, L., Grijalba, P. E., Zilli, C. G., Cejas, E., Mancinelli, B., Balestrasse, K. B. (2019). Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyonv. 5(4), e01495. https://doi.org/10.1016/j.heliyon.2019.e01495
Pérez-Pizá, M.C., Grijalba, P.E., Cejas, E., Garcés, J.C.C., Ferreyra, M., Zilli, C., Vallecorsa, L.P., Santa-Cruz, D., Yannarelli, G., Prevosto, L., Balestrasse, K. (2021). Effects of non-thermal plasma technology on Diaporthe longicolla cultures and mechanisms involved. Pest Manag Sci , 77: 2068–2077. https://doi.org/10.1002/ps.6234
Pérez-Pizá, M.C., Prevosto, L., Zilli, C., Cejas, E., Kelly, H., Balestrasse, K. (2018). Effects of non–thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds. Innovative Food Science and Emerging Technologies, v.49, 82–91. https://doi.org/10.1016/j.ifset.2018.07.009
Pushpavathi, D., Shilpa, M., Siddiqha, A., Kekuda, Prashith Kekuda T.R. (2017). Evaluation of antifungal activity of some plants against seed-borne fungi. Scholars Journal of Agriculture and Veterinary Sciences, v. 4, 155-159. 10.21276/sjavs
Runtzel, C.L., Silva, J.R., Silva, B.A., Moecke, E.S., Scussel, V.M. (2019). Effect of cold plasma on black beans (Phaseolus vulgaris L.), fungi inactivation and micro-structures stability. Emirates Journal of Food and Agriculture, v.31(11), 864-873. https://doi.org/10.9755/ejfa.2019.v31.i11.2029
Sabaté, D.C., Brandam, C.P., Petroselli, G., Erra-Balsells, R., Audisio, M.C. (2018). Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide producer Bacillus strains. Microbiological Reseach, v.211, 21-30. https://doi.org/10.1016/j.micres.2018.04.003
Sabaté, D.C., Petroselli, G., Erra-Balsells, R., Audisio, C., Brandan, C.P. (2020). Beneficial effect of Bacillus sp. P12 on soil biological activities and pathogen control in common bean. Journal Pre-proofs, v.141. https://doi.org/10.1016/j.biocontrol.2019.104131
Samreen, T., Naveed, M., Nazir, M.Z., Asghar, H. N., Khan, M.I., Zahir, Z.A., Kanwal, S., Jeevan, B.; Sharma, D., Meena, V.S., Meena, S.K., Sarkar, D., Devika, O. S., Parihar, M., Choudhary, M. (2021). Seed associated bacterial and fungal endophytes: Diversity, life cycle, transmission, and application potential . Applied Soil Ecology , v. 168. https://doi.org/10.1016/j.apsoil.2021.104191
Selcuk, M., Oksuz, L., Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technology, v.99, 5104–5109. https://doi.org/10.1016/j.biortech.2007.09.076
Será, B., Scholtz, V., Jiresová, J., Khun, J., Julák, J., Sery, M. (2021). Effects of Non-Thermal Plasma Treatment on Seed Germination and Early Growth of Leguminous Plants: A Review. Plants, v.10, 1616. https://doi.org/10.3390/plants10081616
Silva, P.C., Pereira,L.A.S., Rezende, E.M., Reis, M.V., Lago, A.M.T., Carvalho, G.R., Paiva, R., Oliveira, J.E., Marconcini, J.M. (2019). Production and efficacy of neem nanoemulsion in the control of Aspergillus flavus and Penicillium citrinum in soybean seeds. Eur J. Plant Pathol, v.155, 1105–1116. 10.1007/s10658-019- 01838-4
Šimončicová, J., Kaliňáková, B., Kováčik, D., Medvecká, V., Lakatoš, C., Kryštofová, S., Hoppanová, L., Palušková, V., Hudecová, D., Ďurina, P., Zahoranová, A. (2018). Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Applied Microbiology and Biotechnology ,102, 6647–6658. https://doi.org/10.1007/s00253-018-9118-y
Singh, D., Rathaur, P.S. (2020). Detection of Seed and Propagating Material-Borne Bacterial. Diseases of Economically Important Crops. In: Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management (sds) Kumar, R.; Gupta, A. Springer, 143- 168. 10.1007/978-981-32-9046-4_6
Souza, A..L., Vieira, M.J.A., Paiva, M.J.A., Bittencourt, M.T., Vieira, E.N.R., Junior, B.R.C.L. (2022). Antimicrobial biodegradable packaging with nanotechnology application. Research, Society and Development, v. 11, n. 8. 2022. http://dx.doi.org/10.33448/rsd-v11i8.30406
Spadaro, D.; Herforth-Rahm, J.; Wofl, J.V.D. (2017). Organic seed treatments of vegetables to prevent seedborne diseases. Acta Hortic. 1164. https://doi.org/10.17660/ActaHortic.2017.1164.3
Susmita, C., Kumar, S.P.J., Chintagunta, A.D., Lichtfouse, E., Naik, B., Ramya, P., Kumari, K., Kumar, S. (2022) Non thermal plasmas for disease control and abiotic stress management in plants. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-022-01399-9
Swiecimska, M., Tulik, M., Será, B., Golinska, P., Tomeková, J., Medvecjá, V., Bujdáková, H., Oszako, T., Zahoranová, A., Sery, M. (2020). Non-Thermal Plasma Can Be Used in Disinfection of Scots Pine (Pinus sylvestris L.) Seeds Infected with Fusarium oxysporum. Forests, 11, 837. https://doi.org/10.3390/f11080837
Taheri, S., Brodie, G.I., Gupta, D., Jacob, M.V. (2020). Afterglow of atmospheric non-thermal plasma for disinfection of lentil seeds from Botrytis Grey Mould. Innovative Food Science and Emerging Technologies, v. 66, 102488. https://doi.org/10.1016/j.ifset.2020.102488
Tanakaran, Y., & Matra, K. (2022) .The Infuence of Atmospheric Non-thermal Plasma on Jasmine Rice Seed Enhancements. Journal of Plant Growth Regulation, 41,178–187 https://doi.org/10.1007/s00344-020-10275-1
Than, H.A.Q., Pham, T.H., Nguyen, D.K.V., Pham, T.H., & Khacef, A. (2022). Non-thermal Plasma Activated Water for Increasing Germination and Plant Growth of Lactuca sativa L. Plasma Chemistry and Plasma Processing ,42:73–89. https://doi.org/10.1007/s11090-021-10210-6
Torres, M.J., Brandan, C.P., Sabaté, D.C., Petroselli, G., Erra-Balsells, R., & Audisio, M.C. (2017). Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biological Control, v.105, 93-99. https://doi.org/10.1016/j.biocontrol.2016.12.001
Toyokawa, Y., Yagyu, Y., Misawa, T., & Sakudo, A. (2017). A new roller conveyer system of non-thermal gas plasma as a potential control measure of plant pathogenic bacteria in primary food production. Food Control, 72, 62-72. https://doi.org/10.1016/j.foodcont.2016.07.031
Valentini, R.P., Bonome, L.T.S., Moura, G.S., Siqueira, D.J., Tomazi, Y., Franzener, G., & Bittencourt, H.H. (2019). Essential oils of Tahiti lemon and cinnamon bark in control of storage fungi and the physiological and sanitary quality of beans. Plant Pathology, v.86. doi.org/10.1590/1808-1657000172019
Wolf, J. M.V.D.., Birnbaum, P.S., Zouwen, V.D., Groot, S.P.C. (2008). Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extracts. Seed Sci. & Technol., v.36, 76-88. https://doi.org/10.15258/sst.2008.36.1.08
Yahaya, S.M., Yakasi, M.A. (2022). Pathogens as Agent of Seed Borne Diseases. Journal of Plant Biology and Crop Research. Ed. 5(1): 1057. & https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&as_vis=1&q=Pathogens+as+Agent+of+Seed+Borne+Diseases+2022&btnG
Yan, D., Lin, L., Zvansky, M., Kohanzadeh, L., Taban, S., Chriqui, S., & Kaidar, M. (2022). Improving Seed Germination by Cold Atmospheric Plasma. Plasma , 5, 98–111. https://doi.org/10.3390/plasma5010008
Yang, L., He, M., Ouyang, H., Zhu, W., Pan, Z., Sui, Q., Shang, L., & Zhan, J. (2019) Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiology , 19,205. https://doi.org/10.1186/s12866-019-1574-8
Zake, M. (2016). Natural Plant Products as Eco-friendly Fungicides for Plant Diseases Control- A Review. The Agriculturists. v. 14(1), 134-141. https://doi.org/10.3329/agric.v14i1.29111
Zimmermann, R.C.; Poitevin, C.G.; Bischoff, A.M.; Beger, M.; Luz, T.S.; Mazarotto, E.J.; Benatto, A.; Martins, C.E.N.; Maia, B.H.L.N.S.; Sari, R.; Rosa, J.M.; Pimentel, I.C.; & Zawadneak, M.A.C. Insecticidal and antifungal activities of Melaleuca rhaphiophylla essential oil against insects and seed-borne pathogens in stored products. Industrial Crops & Products, 182, 114871, 2022. https://doi.org/10.1016/j.indcrop.2022.114871
Zohora, U.S.; Ano, T., & Rahman, M.S. (2016). Biocontrol of Rhizoctonia solani K1 by Iturin A Producer Bacillus subtilis RB14 Seed Treatment in Tomato Plants. Advances in Microbiology, 6, 424-431. http://dx.doi.org/10.4236/aim.2016.66042
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Abraão Rodrigues de Almeida; Erika Valente de Medeiros ; Edilma Pereira Gonçalves ; Luciana Maia Mosser ; Janaina Marques Mondego; José George Ferreira Medeiros; João Paulo Goes da Silva Borges ; Edcleyton José de Lima; Kedma Maria Silva Pinto
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.