Descrição dos padrões de saúde de idosos totalmente vacinados e hospitalizados por COVID-19 no Brasil por meio de regras de associação
DOI:
https://doi.org/10.33448/rsd-v11i16.37666Palavras-chave:
COVID-19; Sintomas; Doença crônica; Idosos; Hospitalização; Mineração de dados.Resumo
A doença do coronavírus 2019 (COVID-19) constitui-se como um problema de saúde pública global. Desde o início da pandemia, notificada em março de 2020, o Brasil apresenta alta letalidade da doença em idosos. De 2012 a 2018, o país apresentou um aumento de 20% na população de idosos. Apesar da completude dos protocolos vacinais contra a COVID-19 no país, há evidências de que essa faixa etária, associada à presença de comorbidades, pode ser um preditor da ocorrência de internação e apresentação de sintomas graves da doença. Nessa direção, este trabalho teve como objetivo identificar padrões e relações entre sintomas, comorbidades, gênero, internação em Unidade de Terapia Intensiva (UTI) e estado de sobrevida de idosos, totalmente vacinados contra a COVID-19, hospitalizados no Brasil. Para tanto, utilizou-se do método de mineração de regras de associação no banco de dados do OpenDataSUS. Para o grupo de pacientes com comorbidade, predominaram as associações de condições de saturação de oxigênio (SpO2) <95%, dispneia e óbito. O sexo feminino associou-se à sobrevida e presença de comorbidades, enquanto o sexo masculino ao óbito e internação na UTI. Para os pacientes internados na UTI e que foram a óbito, encontrou-se associações com SpO2<95%, dispneia, presença de comorbidades e uso de suporte ventilatório. O procedimento de mineração de regras de associação mostrou-se útil no levantamento do perfil de hospitalização desses pacientes.
Referências
Alimohamadi, Y., Sepandi, M., Taghdir, M., & Hosamirudsari, H. (2020). Determine the most common clinical symptoms in COVID-19 patients: a systematic review and meta-analysis. Journal of preventive medicine and hygiene, 61(3), 304–312. https://doi.org/10.15167/2421-4248/jpmh2020.61.3.1530.
Alsaffar, W. A., Alwesaibi, A. A., Alhaddad, M. J., Alsenan, Z. K., Alsheef, H. J., Alramadan, S. H., Aljassas, H. A., Alsaghirat, M. A., & Alzahrani, H. J. (2022). The Effectiveness of COVID-19 Vaccines in Improving the Outcomes of Hospitalized COVID-19 Patients. Cureus, 14(1), e21485. https://doi.org/10.7759/cureus.21485.
Andryukov, B. G., & Besednova, N. N. (2021). Older adults: panoramic view on the COVID-19 vaccination. AIMS public health, 8(3), 388–415. https://doi.org/10.3934/publichealth.2021030.
Assis, S. J. C., Lopes, J. M., Guedes, M., Sanchis, G., Araujo, D. N., & Roncalli, A. G. (2021). Primary health care and social isolation against COVID-19 in Northeastern Brazil: Ecological time-series study. PloS one, 16(5), e0250493. https://doi.org/10.1371/journal.pone.0250493.
Atkins, J. L., Masoli, J., Delgado, J., Pilling, L. C., Kuo, C. L., Kuchel, G. A., & Melzer, D. (2020). Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort. The journals of gerontology. Series A, Biological sciences and medical sciences, 75(11), 2224–2230. https://doi.org/10.1093/gerona/glaa183.
Baqui, P., Bica, I., Marra, V., Ercole, A., & van Der Schaar, M. (2020a). Ethnic and regional variations in hospital mortality from COVID-19 in Brazil: a cross-sectional observational study. The Lancet Global Health, 8(8), 1018-1026.
Baqui, P., Marra, V., Alaa, A. M., Bica, I., Ercole, A., & van der Schaar, M. (2021b). Comparing COVID-19 risk factors in Brazil using machine learning: the importance of socioeconomic, demographic and structural factors. Scientific reports, 11(1), 15591. https://doi.org/10.1038/s41598-021-95004-8.
Bee, G. R., Pinto, D. D., da Silva, A. C. C. A., Oliveira, T., & Arrigo, J. da S. (2022). Vacinas contra COVID-19 disponíveis no Brasil / Vaccines against COVID-19 available in Brazil. Brazilian Journal of Development, 8(1), 6246–6263. https://doi.org/10.34117/bjdv8n1-422.
Brazil (2021). Coronavirus panel.
Candido, D. S., Claro, I. M., de Jesus, J. G., Souza, W. M., Moreira, F., Dellicour, S., Mellan, T. A., du Plessis, L., Pereira, R., Sales, F., Manuli, E. R., Thézé, J., Almeida, L., Menezes, M. T., Voloch, C. M., Fumagalli, M. J., Coletti, T. M., da Silva, C., Ramundo, M. S., Amorim, M. R., & Faria, N. R. (2020). Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science (New York, N.Y.), 369(6508), 1255–1260. https://doi.org/10.1126/science.abd2161.
Capuano, A., Rossi, F., & Paolisso, G. (2020). Covid-19 Kills More Men Than Women: An Overview of Possible Reasons. Frontiers in cardiovascular medicine, 7, 131. https://doi.org/10.3389/fcvm.2020.00131.
Cash, R., Patel, V. (2020). Has COVID-19 subverted global health? The Lancet, 395 (10238) 1687-1688.
Chang, R., Elhusseiny, K. M., Yeh, Y. C., & Sun, W. Z. (2021). COVID-19 ICU and mechanical ventilation patient characteristics and outcomes-A systematic review and meta-analysis. PloS one, 16(2), e0246318. https://doi.org/10.1371/journal.pone.0246318.
Connor, J., Madhavan, S., Mokashi, M., Amanuel, H., Johnson, N. R., Pace, L. E., & Bartz, D. (2020). Health risks and outcomes that disproportionately affect women during the Covid-19 pandemic: A review. Social science & medicine (1982), 266, 113364. https://doi.org/10.1016/j.socscimed.2020.113364.
Deng, Y., Liu, W., Liu, K., Fang, Y. Y., Shang, J., Zhou, L., Wang, K., Leng, F., Wei, S., Chen, L., & Liu, H. G. (2020). Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: a retrospective study. Chinese medical journal, 133(11), 1261–1267. https://doi.org/10.1097/CM9.0000000000000824.
Elghazaly, S., Abu, E. S. H., Samy, S., AbdelFatah, M., Hassany, M., Khader, Y., Afifi, S., & Eid, A. (2022). The Impact of Comorbidities on COVID-19 Severity and Mortality in Egypt iproc. Jmir Publications, 8(1):e36576. doi: 10.2196/36576.
FGV - Fundação Getúlio Vargas (2021). Older adults Maps.
Fu, L., Wang, B., Yuan, T., Chen, X., Ao, Y., Fitzpatrick, T., Li, P., Zhou, Y., Lin, Y. F., Duan, Q., Luo, G., Fan, S., Lu, Y., Feng, A., Zhan, Y., Liang, B., Cai, W., Zhang, L., Du, X., Li, L., & Zou, H. (2020). Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. The Journal of infection, 80(6), 656–665. https://doi.org/10.1016/j.jinf.2020.03.041.
Hahsler, M., Buchta, C., Grun, B., & Hornik, K. (2022). Arules: Mining Association Rules and Frequent Itemsets, Package Version 1.7-3 of rproject.org.
Jacobs, L. G., Gourna Paleoudis, E., Lesky-Di Bari, D., Nyirenda, T., Friedman, T., Gupta, A., Rasouli, L., Zetkulic, M., Balani, B., Ogedegbe, C., Bawa, H., Berrol, L., Qureshi, N., & Aschner, J. L. (2020). Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PloS one, 15(12), e0243882. https://doi.org/10.1371/journal.pone.0243882.
Jean-Marc, A. (2001). Data mining for association rules and sequential patterns: sequential and parallel algorithms. Springer Science & Business Media.
Jin, J. M., Bai, P., He, W., Wu, F., Liu, X. F., Han, D. M., Liu, S., & Yang, J. K. (2020). Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Frontiers in public health, 8, 152. https://doi.org/10.3389/fpubh.2020.00152.
Koenig, S. M., & Truwit, J. D. (2006). Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clinical microbiology reviews, 19(4), 637–657. https://doi.org/10.1128/CMR.00051-05.
Lipsky, M. S., & Hung, M. (2020). Men and COVID-19: A Pathophysiologic Review. American journal of men's health, 14(5), 1557988320954021. https://doi.org/10.1177/1557988320954021.
Lv, G., Yuan, J., Xiong, X., & Li, M. (2021). Mortality Rate and Characteristics of Deaths Following COVID-19 Vaccination. Frontiers in medicine, 8, 670370. https://doi.org/10.3389/fmed.2021.670370.
Mejía, F., Medina, C., Cornejo, E., Morello, E., Vásquez, S., Alave, J., Schwalb, A., & Málaga, G. (2020). Oxygen saturation as a predictor of mortality in hospitalized adult patients with COVID-19 in a public hospital in Lima, Peru. PloS one, 15(12), e0244171. https://doi.org/10.1371/journal.pone.0244171.
Mendes, E. V. (2018). The care of chronic conditions in primary health care. Revista Brasileira em Promoção da Saúde, 31 (2), 1-3.
Mi, J., Zhong, W., Huang, C., Zhang, W., Tan, L., & Ding, L. (2020). Gender, age and comorbidities as the main prognostic factors in patients with COVID-19 pneumonia. American journal of translational research, 12(10), 6537–6548.
Misra-Hebert, A. D., Hu, B., Pantalone, K. M., & Pfoh, E. R. (2021). Primary Care Health Care Use for Patients With Type 2 Diabetes During the COVID-19 Pandemic. Diabetes care, 44(9), 173–174. https://doi.org/10.2337/dc21-0853.
Moreno-Perez, O., Ribes, I., Boix, V., Martinez-García, M. Á., Otero-Rodriguez, S., Reus, S., Sánchez-Martínez, R., Ramos, J. M., Chico-Sánchez, P., Merino, E., & On behalf the COVID-19 ALC research group (2022). Hospitalized patients with breakthrough COVID-19: Clinical features and poor outcome predictors. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 118, 89–94. https://doi.org/10.1016/j.ijid.2022.02.007.
Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B., & Wu, J. C. (2020). COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature reviews. Cardiology, 17(9), 543–558. https://doi.org/10.1038/s41569-020-0413-9.
Pan American Health Organization. (2021). What is primary health care?
Passos, V. M. A., Champs, A., Teixeira, R., Lima-Costa, M., Kirkwood, R., Veras, R., Nascimento, B. R., Nogales, A. M., Schmidt, M. I., Duncan, B. B., Cousin, E., Naghavi, M., & Souza, F. M. (2020). The burden of disease among Brazilian older adults and the challenge for health policies: results of the Global Burden of Disease Study 2017. Population health metrics, 18(Suppl 1), 14. https://doi.org/10.1186/s12963-020-00206-3.
OpenDataSUS Platform by Federal Government (2022).
PrabhuDas, M., Fuldner, R., Farber, D., Kuchel, G.A., Mannick, J., Nikolich-Zugich, J., Sen, R., & Turner, J. (2021). Research and resource needs for understanding host immune responses to SARS-CoV-2 and COVID-19 vaccines during aging. Nat Aging 1, 1073–1077. https://doi.org/10.1038/s43587-021-00156-x.
Raimondi, F., Novelli, L., Ghirardi, A., Russo, F. M., Pellegrini, D., Biza, R., Trapasso, R., Giuliani, L., Anelli, M., Amoroso, M., Allegri, C., Imeri, G., Sanfilippo, C., Comandini, S., Hila, E., Manesso, L., Gandini, L., Mandelli, P., Monti, M., Gori, M., & HPG23 Covid-19 Study Group (2021). Covid-19 and gender: lower rate but same mortality of severe disease in women-an observational study. BMC pulmonary medicine, 21(1), 96. https://doi.org/10.1186/s12890-021-01455-0.
Rocha, R., Atun, R., Massuda, A., Rache, B., Spinola, P., Nunes, L., Lago, M., & Castro, M. C. (2021). Effect of socioeconomic inequalities and vulnerabilities on health-system preparedness and response to COVID-19 in Brazil: a comprehensive analysis. The Lancet. Global health, 9(6), 782–792. https://doi.org/10.1016/S2214-109X(21)00081-4.
Shawkat, M., Mahmoud, B., & Ali, I.E. (2021). "A Novel Approach of Frequent Itemsets Mining for Coronavirus Disease (COVID-19)." European Journal of Electrical Engineering and Computer Science, 5(2), 5-12.
Shin, D. P., Park, Y. J., & Seo, J. (2018). Association Rules Mined from Construction Accident Data. KSCE J Civ Eng, 22 (4), 1027–1039 (2018). https://doi.org/10.1007/s12205-017-0537-6.
Tandan, M., Acharya, Y., Pokharel, S., & Timilsina, M. (2021). Discovering symptom patterns of COVID-19 patients using association rule mining. Computers in biology and medicine, 131, 104249. https://doi.org/10.1016/j.compbiomed.2021.104249.
Vaccination Brazil Platform by Federal Government (2022).
WHO - World Health Organization (2021). Panel COVID-19 by WHO.
Williams, G. (2011). Data mining with Rattle and R: The art of excavating data for knowledge discovery. Springer Science & Business Media.
Zhu, J., Yan, W., Zhun, L., & Liu, J. (2021). COVID-19 pandemic in BRICS countries and its association with socio-economic and demographic characteristics, health vulnerability, resources, and policy response. Infect Dis Poverty, 10 (97).
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Thaís Barbosa de Oliveira; Lorrany Santos Rodrigues; Wendy Rayanne Fernandes dos Santos; Maurício Yukio Hirata; Caroliny Victoria dos Santos Silva; Josmar Mazucheli
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.