Bioenergética mitocondrial e balanço oxidativo em modelos de infecções in vitro por arbovírus: uma revisão sistemática

Autores

DOI:

https://doi.org/10.33448/rsd-v11i16.37749

Palavras-chave:

Arbovírus; Células; Mitocôndria; Estresse oxidativo.

Resumo

Introdução: As infecções virais afetam o metabolismo oxidativo e podem repercutir nas alterações mitocondriais, comprometendo a homeostase celular. Objetivos: Avaliar a bioenergética mitocondrial e o balanço oxidativo em modelos in vitro de infecção por arbovírus. Métodos: A revisão foi escrita de acordo com o PRISMA e submetida à plataforma Open Science FrameWork com DOI 10.17605/OSF.IO/8ZFSW. Foram utilizados os Descritores/MeSH (Arbovirus, Arboviruses, Arbovirus infecções, Mitochondria, Oxidative stress and Reactive oxigênio species) foi realizado nas plataformas: PubMed, SCOPUS, COCHRANE, Lilacs e Web of Science. A análise da qualidade dos estudos foi realizada por meio da ferramenta ARRIVE adaptada ao CONSORT, seguida do teste de concordância KAPPA, foram utilizados 24 artigos. Resultados: Os resultados mostram alterações morfológicas nas mitocôndrias, como inchaço, fragmentação e aparecimento de membranas. O estiramento mitocondrial foi mais intenso nas regiões próximas às zonas convolutas, associado a alterações nos genes da dinâmica mitocondrial. Alterações nos biomarcadores de estresse oxidativo, enzimas antioxidantes e produção de EROs foram evidentes na maioria dos artigos, exceto naqueles que utilizaram células de origem imunológica. Conclusão: Alterações na bioenergética mitocondrial podem auxiliar o vírus no processo de replicação, porém, essas alterações podem resultar em danos celulares e de estresse oxidativo.

Biografia do Autor

Renata Emmanuele Assunção Santos, Universidade Federal de Pernambuco

Nutrition, MSc in Nutrition, Physical Activity and Phenotypic Plasticity graduate program; Nutrition graduate program, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão (PE), Brazil.

Gizele Santiago de Moura Silva, Universidade Federal de Pernambuco

Physical education professional, MSc in Nutrition, Physical Activity and Phenotypic Plasticity graduate program; Laboratory of Biochemistry and Exercise Biochemistry, Departament of Physical Education and Sports Science, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão (PE), Brazil.

Kelli Nogueira Ferraz-Pereira , Universidade Federal de Pernambuco

Speech Therapist, PhD in Science. Nutrition, Physical Activity and Phenotypic Plasticity graduate program, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão (PE), Brazil.

Ana Lisa do Vale Gomes, Universidade Federal de Pernambuco

Biomedicine, PhD in Science. Nutrition, Physical Activity and Phenotypic Plasticity graduate program; Adjunct Professor III, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão (PE), Brazil.

Mariana Pinheiro Fernandes, Universidade Federal de Pernambuco

Biomedicine, PhD in Science. Nutrition, Physical Activity and Phenotypic Plasticity graduate program; Laboratory of Biochemistry and Exercise Biochemistry, Departament of Physical Education and Sports Science, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão (PE), Brazil. Associate professor I, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão (PE), Brazil.

 

Referências

Azeredo, E. L., Dos Santos, F. B., Barbosa, L. S., Souza, T., Badolato-Corrêa, J., Sánchez-Arcila, J. C., Nunes, P., de-Oliveira-Pinto, L. M., de Filippis, A. M., Dal Fabbro, M., Hoscher Romanholi, I., & Venancio da Cunha, R. (2018). Clinical and Laboratory Profile of Zika and Dengue Infected Patients: Lessons Learned From the Co-circulation of Dengue, Zika and Chikungunya in Brazil. PLoS currents, 10, ecurrents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5. https://doi.org/10.1371/currents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5.

Banerjee, N., & Mukhopadhyay, S. (2018). Oxidative damage markers and inflammatory cytokines are altered in patients suffering with post-chikungunya persisting polyarthralgia. Free radical research, 52(8), 887–895. https://doi.org/10.1080/10715762.2018.1489131.

Beckham, J. D., & Tyler, K. L. (2015). Arbovirus Infections. Continuum (Minneapolis, Minn.), 21(6 Neuroinfectious Disease), 1599–1611. https://doi.org/10.1212/CON.0000000000000240.

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. The World Allergy Organization journal, 5(1), 9–19. https://doi.org/10.1097/WOX.0b013e3182439613.

Camini, F. C., da Silva Caetano, C. C., Almeida, L. T., da Costa Guerra, J. F., de Mello Silva, B., de Queiroz Silva, S., de Magalhães, J. C., & de Brito Magalhães, C. L. (2017). Oxidative stress in Mayaro virus infection. Virus research, 236, 1–8. https://doi.org/10.1016/j.virusres.2017.04.017.

Cavalheiro, M. G., Costa, L. S., Campos, H. S., Alves, L. S., Assunção-Miranda, I., & Poian, A. T. (2016). Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication. Anais da Academia Brasileira de Ciencias, 88(3), 1485–1499. https://doi.org/10.1590/0001-3765201620150685.

Chatel-Chaix, L., Cortese, M., Romero-Brey, I., Bender, S., Neufeldt, C. J., Fischl, W., Scaturro, P., Schieber, N., Schwab, Y., Fischer, B., Ruggieri, A., & Bartenschlager, R. (2016). Dengue Virus Perturbs Mitochondrial Morphodynamics to Dampen Innate Immune Responses. Cell host & microbe, 20(3), 342–356. https://doi.org/10.1016/j.chom.2016.07.008.

Cherupanakkal, C., Samadanam, D. M., Muthuraman, K. R., Ramesh, S., Venkatesan, A., Balakrishna Pillai, A. K., & Rajendiran, S. (2018). Lipid peroxidation, DNA damage, and apoptosis in dengue fever. IUBMB life, 70(11), 1133–1143. https://doi.org/10.1002/iub.1925.

Datan, E., Roy, S. G., Germain, G., Zali, N., McLean, J. E., Golshan, G., Harbajan, S., Lockshin, R. A., & Zakeri, Z. (2016). Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell death & disease, 7(3), e2127. https://doi.org/10.1038/cddis.2015.409.

Dhanwani, R., Khan, M., Bhaskar, A. S., Singh, R., Patro, I. K., Rao, P. V., & Parida, M. M. (2012). Characterization of Chikungunya virus infection in human neuroblastoma SH-SY5Y cells: role of apoptosis in neuronal cell death. Virus research, 163(2), 563–572. https://doi.org/10.1016/j.virusres.2011.12.009.

Fernandes-Siqueira LO, Zeidler JD, Sousa BG, Ferreira T, Da Poian AT. Anaplerotic Role of Glucose in the Oxidation of Endogenous Fatty Acids during Dengue Virus Infection. mSphere. 2018 Jan 31;3(1):e00458-17. doi: 10.1128/mSphere.00458-17. PMID: 29404419; PMCID: PMC5793041.

Fontaine, K. A., Sanchez, E. L., Camarda, R., & Lagunoff, M. (2015). Dengue virus induces and requires glycolysis for optimal replication. Journal of virology, 89(4), 2358–2366. https://doi.org/10.1128/JVI.02309-14.

Gullberg, R. C., Jordan Steel, J., Moon, S. L., Soltani, E., & Geiss, B. J. (2015). Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology, 475, 219–229. https://doi.org/10.1016/j.virol.2014.10.037.

Keck, F., Brooks-Faulconer, T., Lark, T., Ravishankar, P., Bailey, C., Salvador-Morales, C., & Narayanan, A. (2017). Altered mitochondrial dynamics as a consequence of Venezuelan Equine encephalitis virus infection. Virulence, 8(8), 1849–1866. https://doi.org/10.1080/21505594.2016.1276690.

Keck, F., Khan, D., Roberts, B., Agrawal, N., Bhalla, N., & Narayanan, A. (2018). Mitochondrial-Directed Antioxidant Reduces Microglial-Induced Inflammation in Murine In Vitro Model of TC-83 Infection. Viruses, 10(11), 606. https://doi.org/10.3390/v10110606.

Kim, S. J., Syed, G. H., Khan, M., Chiu, W. W., Sohail, M. A., Gish, R. G., & Siddiqui, A. (2014). Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6413–6418. https://doi.org/10.1073/pnas.1321114111.

Lai, J. H., Wang, M. Y., Huang, C. Y., Wu, C. H., Hung, L. F., Yang, C. Y., Ke, P. Y., Luo, S. F., Liu, S. J., & Ho, L. J. (2018). Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO reports, 19(8), e46182. https://doi.org/10.15252/embr.201846182.

Leta, S., Beyene, T. J., De Clercq, E. M., Amenu, K., Kraemer, M., & Revie, C. W. (2018). Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 67, 25–35. https://doi.org/10.1016/j.ijid.2017.11.026.

Lopes, Nayara, Nozawa, Carlos, & Linhares, Rosa Elisa Carvalho. (2014). Características gerais e epidemiologia dos arbovírus emergentes no Brasil. Revista Pan-Amazônica de Saúde, 5(3), 55-64. https://dx.doi.org/10.5123/s2176-62232014000300007.

Maynard, N. D., Gutschow, M. V., Birch, E. W., & Covert, M. W. (2010). The virus as metabolic engineer. Biotechnology journal, 5(7), 686–694. https://doi.org/10.1002/biot.201000080.

Moher D, Liberati A, Tetzlaff J, Altman DG (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 62(10):1006-12. https://doi.org/10.1016/j.jclinepi.2009.06.005.

Moreno-Altamirano, M. M., Rodríguez-Espinosa, O., Rojas-Espinosa, O., Pliego-Rivero, B., & Sánchez-García, F. J. (2015). Dengue Virus Serotype-2 Interferes with the Formation of Neutrophil Extracellular Traps. Intervirology, 58(4), 250–259. https://doi.org/10.1159/000440723.

Mukherjee, P., Woods, T. A., Moore, R. A., & Peterson, K. E. (2013). Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity, 38(4), 705–716. https://doi.org/10.1016/j.immuni.2013.02.013.

Narayanan, A., Amaya, M., Voss, K., Chung, M., Benedict, A., Sampey, G., Kehn-Hall, K., Luchini, A., Liotta, L., Bailey, C., Kumar, A., Bavari, S., Hakami, R. M., & Kashanchi, F. (2014). Reactive oxygen species activate NFκB (p65) and p53 and induce apoptosis in RVFV infected liver cells. Virology, 449, 270–286. https://doi.org/10.1016/j.virol.2013.11.023.

Narayanan, A., Popova, T., Turell, M., Kidd, J., Chertow, J., Popov, S. G., Bailey, C., Kashanchi, F., & Kehn-Hall, K. (2011). Alteration in superoxide dismutase 1 causes oxidative stress and p38 MAPK activation following RVFV infection. PloS one, 6(5), e20354. https://doi.org/10.1371/journal.pone.0020354.

Olagnier, D., Peri, S., Steel, C., van Montfoort, N., Chiang, C., Beljanski, V., Slifker, M., He, Z., Nichols, C. N., Lin, R., Balachandran, S., & Hiscott, J. (2014). Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS pathogens, 10(12), e1004566. https://doi.org/10.1371/journal.ppat.1004566.

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763.

Powers A. M. (2017). Vaccine and Therapeutic Options To Control Chikungunya Virus. Clinical microbiology reviews, 31(1), e00104-16. https://doi.org/10.1128/CMR.00104-16.

Qi, Y., Li, Y., Zhang, Y., Zhang, L., Wang, Z., Zhang, X., Gui, L., & Huang, J. (2015). IFI6 Inhibits Apoptosis via Mitochondrial-Dependent Pathway in Dengue Virus 2 Infected Vascular Endothelial Cells. PloS one, 10(8), e0132743. https://doi.org/10.1371/journal.pone.0132743.

Sheeran FL, Pepe S. Mitochondrial Bioenergetics and Dysfunction in Failing Heart (2017). Adv Exp Med Biol.982:65-80. doi: 10.1007/978-3-319-55330-6_4. PMID: 28551782.

Silva da Costa, L., Pereira da Silva, A. P., Da Poian, A. T., & El-Bacha, T. (2012). Mitochondrial bioenergetic alterations in mouse neuroblastoma cells infected with Sindbis virus: implications to viral replication and neuronal death. PloS one, 7(4), e33871. https://doi.org/10.1371/journal.pone.0033871.

Tait, S. W., & Green, D. R. (2012). Mitochondria and cell signalling. Journal of cell science, 125(Pt 4), 807–815. https://doi.org/10.1242/jcs.099234.

Terasaki, K., Won, S., & Makino, S. (2013). The C-terminal region of Rift Valley fever virus NSm protein targets the protein to the mitochondrial outer membrane and exerts antiapoptotic function. Journal of virology, 87(1), 676–682. https://doi.org/10.1128/JVI.02192-12.

Tung, W. H., Tsai, H. W., Lee, I. T., Hsieh, H. L., Chen, W. J., Chen, Y. L., & Yang, C. M. (2010). Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-κB signalling dependent on MAPKs and reactive oxygen species. British journal of pharmacology, 161(7), 1566–1583. https://doi.org/10.1111/j.1476-5381.2010.00982.x.

Valero, N., Mosquera, J., Añez, G., Levy, A., Marcucci, R., & de Mon, M. A. (2013). Differential oxidative stress induced by dengue virus in monocytes from human neonates, adult and elderly individuals. PloS one, 8(9), e73221. https://doi.org/10.1371/journal.pone.0073221.

Verma, A. K., Ghosh, S., Pradhan, S., & Basu, A. (2016). Microglial activation induces neuronal death in Chandipura virus infection. Scientific reports, 6, 22544. https://doi.org/10.1038/srep22544.

WORLD HEALTH ORGANIZATION (WHO) A global brief on vector-borne diseases (2014). http://apps.who.int/iris/bitstream/10665/111008/1/WHO_DCO_WHD_2014.1_eng.pdf

Yang, T. C., Lai, C. C., Shiu, S. L., Chuang, P. H., Tzou, B. C., Lin, Y. Y., Tsai, F. J., & Lin, C. W. (2010). Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells. Microbes and infection, 12(8-9), 643–651. https://doi.org/10.1016/j.micinf.2010.04.007.

Yu, C. Y., Liang, J. J., Li, J. K., Lee, Y. L., Chang, B. L., Su, C. I., Huang, W. J., Lai, M. M., & Lin, Y. L. (2015). Dengue Virus Impairs Mitochondrial Fusion by Cleaving Mitofusins. PLoS pathogens, 11(12), e1005350. https://doi.org/10.1371/journal.ppat.1005350

Downloads

Publicado

07/12/2022

Como Citar

OLIVEIRA, W. de A. .; SANTOS, R. E. A. .; SILVA, G. S. de M. .; FERRAZ-PEREIRA , K. N. .; GOMES, A. L. do V. .; FERNANDES, M. P. . Bioenergética mitocondrial e balanço oxidativo em modelos de infecções in vitro por arbovírus: uma revisão sistemática. Research, Society and Development, [S. l.], v. 11, n. 16, p. e266111637749, 2022. DOI: 10.33448/rsd-v11i16.37749. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37749. Acesso em: 22 nov. 2024.

Edição

Seção

Artigos de Revisão