Complexo Industrial de Furnas a busca pela diversificação da matriz energética através das fontes eólica e fotovoltaica: breve estudo de caso

Autores

DOI:

https://doi.org/10.33448/rsd-v11i16.37896

Palavras-chave:

Diversificação da Matriz Energética; Suprimento da Demanda Energética; Segurança e estabilidade.

Resumo

O Brasil, tradicionalmente explora uma matriz energética geradora de baixo impacto nas mudanças climáticas. Todavia, as recentes crises energéticas sinalizaram a necessidade de diversificação desta matriz. Em vista disso, um dos objetivos do presente trabalho foi avaliar a possiblidade de utilização das fontes eólica e fotovoltaica para atender as necessidades de energia brasileiras. O segundo objetivo foi descrever e avaliar a relevância das iniciativas do Complexo Industrial de Furnas na busca por diversificação das fontes energéticas, na área eólica e fotovoltaica. A pesquisa foi empreendida entre os meses de abril e junho de 2022. Consistiu em uma revisão sistemática de literatura em que foram analisados trabalhos científicos e dados de agências oficiais brasileiras e estrangeiras, buscando informações que possibilitassem analisar quais eram e qual a relevância das iniciativas do Complexo Industrial de Furnas no que tange às modalidades energéticas eólica e fotovoltaica. Como resultados, foi possível averiguar que as necessidades energéticas brasileiras e mundiais são crescentes, mas que a energia eólica e a fotovoltaica são fontes promissoras para o suprimento desta demanda. Por fim, concluiu-se que o Complexo de Furnas já aderiu à nova tendência e possui iniciativas e perspectivas de expansão nas modalidades citadas. Assim, acredita-se que o Complexo já apresenta boas alternativas para a manutenção de baixa emissão de gases de efeito estufa e para a garantia da segurança e estabilidade da rede elétrica, com tendências de expansão.

Referências

Alfredsen, K., Amundsen, P. A., Han, L., Harrison, P. M., Helland, L. P., Martins, E. G., Twardek & Power, M. (2022). A synoptic history of the development, production and environmental oversight of hydropower in Brazil, Canada, and Norway. Hydrobiologia, 849(05), 269-280.

Ali, M., Eckstrom, J. & Lehtonen, M. (2018). Sizing hydrogen energy storage in consideration of demand response in highly renewable generation power systems. Energies, 11(05), 1113.

Arantegui, R. L. & Jafer-Waldau, A. (2018). Photovoltaics and wind status in the European Union after the Paris Agreement. Renewable and Sustainable Energy Reviews, 81, pt. 02, 2460-2471.

Asadi, M. & Hassanzadeh, R. (2022). On the application of semicircular and Bach-type blades in the internal Savonius rotor of a hybrid wind turbine system. Journal of Wind Engineering and Industrial Aerodynamics, 221.

Bardin, L. (2015). Análise de Conteúdo. Lisboa: Edições 70. 288 p.

Bezerra, F. D. (2021) Energia eólica no Nordeste. Escritório Técnico de Estudos Econômicos do Nordeste, 06(200).

Bezerra, F. D. (2021). Oportunidade para o Nordeste em energia eólica. Caderno Setorial do ETENE, 06(177).

Bizawu, S. K. & Soares, C. N. S. (2018). Energia renovável: o impacto na usina de Furnas. Revista da AJURIS, 45(145).

Borges, F. Q. (2021). Estrutura institucional do setor de energia elétrica no Brasil e o desenvolvimento sustentável. RECIMA21, 02(03), 198-212.

Brannstrom, C., Gorayeb, A., Souza, W. F., Leite, N. S., Chaves, L. O., Guimarães, R. & Gê, D. R. F. (2018). Perspectivas geográficas nas transformações do litoral brasileiro pela energia eólica. Revista Brasileira de Geografia, 63(01), 03-28.

Brasil Ventos. (2022). Complexo Eólico de Fortim. Disponível em: www.brasilventos.com.br>. Acesso em 12 de maio de 2022.

Brasil. (2002) Lei n. 10.438, de 26 de abril de 2002. Diário Oficial da União, Brasília, 26 de abril de 2002.

Brasil. (2003). Lei 10.762, de 11 de novembro de 2003. Diário Oficial da União, 11 de novembro de 2003.

Byrne, M. P., Pandergrass, A. G., Rapp, A. D. & Wodizicki, K. R. (2018). Response of the intertropical convergence zone to climate change: location, width, and strength. Current Climate Change Reports, 04(04), 355–370.

Campagna, L. M. & Fiorito, F. (2022). On the Impact of Climate Change on Building Energy Consumptions: A Meta-Analysis. Energies, 15(354).

Ceará. Decreto nº 32.438 de 08 de dezembro de 2017. Diário Oficial do Estado, 07 de dezembro de 2017.

Cuartas, L. A., Cunha, A. P. M.A., Alves, J. A., Parra, L. M. P., Deusdará-Leal, K., Costa, L. C. O., Molina, R. D., Amore, D., Broedel, E., Seluchi, M., Cunningham, C., Alvavá, R. C. S. & Marengo, J. A. (2022). Recent hydrological droughts in Brazil and their impact on hydropower generation. Water, 14(04), 601.

Empresa de Pesquisa Energétia (EPE). (2021). Plano Decenal de Expansão da Energia Elética- 2030. Brasília: MME/EP.

Empresa de Pesquisa Energética (EPE). (2022). Resenha Mensal do Mercado de Energia Elétrica, 15(176).

Frabetti, G. (2020). Fluidez do capital, colapso nas cidades amazônicas: notas sobre a crise energética e humanitária no estado do Amapá. Geografares, 31.

Furnas a. (2022) Complexo Eólico de Fortim. www.furnas.com.br/subsecao/362/complexo-eolico-de-fortim---123-mw?culture=pt>.

Furnas b. (2022). Furnas energiza sua primeira usina solar e estreia na geração distribuída de energia. www.furnas.com.br/noticia/103/noticias/1461.

Furnas. (2021) Novos projetos, 2021. www.furnas.com.br/novosprojetos/?culture=pt>.

Galvão, M. C. B., Pluye, P. & Ricarte, I. L. (2018). M. Métodos de pesquisa mistos e revisões de literatura mistas: conceitos, construção e critérios de avaliação. InCID: Revista da Ciência da Informação e Documentação, 08(02), 4-24.

Galvão, M. C. B. & Ricarte, I. L. (2020) Revisão Sistemática de Literatura: conceituação, produção e publicação. LOGEION: Filosofia da Informação, 06(01), 57-73.

Gehrke, P., Goretti, A. L. T., & Avila, L. V. (2021). Impacts of the energy matrix on Brazilian sustainable development. Revista de Administração da UFSM, 14, 1032-1049.

González, A. B. P. (2021). Transição energética para a sustentabilidade no Chile e no Brasil: oportunidades e desafios decorrentes da pandemia por Covid-19. Latin American Journal of Energy Research, 8(01), 1–21.

Gôuvea, R. L. P. & Silva, P. A. (2018). Desenvolvimento do setor eólico no Brasil. Revista BNDES, 25(49), 81-118.

Hayat, M. B., Ali, D., Monyake, K. C., Alaga, L. & Ahmed, N. (2018) Solar energy - a look into power generation, challenges, and a solar-powered future. International Journal on Energy Research, 49 (03), 1049-1077.

HU, S. (2021). Refining El Niño projections. Nature Climate. Climate Change, 11, 724 – 725.

IPCC SR 1.5. (2018). Global Warming of 1.5 °C: an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Summary for Policymakers.

Internacional Energy Agency (IEA). (2022). Electricity Market Report. www.iea.org/reports/electricity-market-report-january-2022.

King, A. D., Sniderman, J. M. K., Dittus A. J., Brown, J. R., Hawkins, E. & Ziehn, T. (2021). Studying climate stabilization at Paris Agreement levels. Nature Climate Change,11, 1010-1013.

Laugs, G. A. H., Benders, R. M. J. & Moll, H. C. (2020). Balancing responsibilities: effects of growth of variable renewable energy, storage, and undue grid interaction. Energy Policy, 139(111203).

Meinshausen, M., Lewis, J., McGlade, C., Gutschow, J., Nicholls, Z., Burdon, R., Cozzi, L. & Hackmann, B. (2022). Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature, (604), 304-309.

Mendes, R. M. & Miskulin, R. G. S. (2017). A análise de conteúdo como uma metodologia. Cadernos de Pesquisa, v. 47(165), 1044-1066.

Mensah, J. H. R., Santos, I. F. S., Raimundo, D. R., Botan, M. C. C. O., Barros, M. R. & Tiago Filho, G. R. (2022). Energy and economic study of using Pumped Hydropower Storage with renewable resources to recover the Furnas reservoir. Renewable Energy, 199, 320-334.

Montoya, M. A., Allegretti, G., Bertussi, L. A. S. & Talamini, E. (2021). Renewable and non-renewable in the energy-emissions-climate nexus: Brazilian contributions to climate change via international trade. Journal of Cleaner Production, 312, 2021.

Nascimento, P. Y. (2021). Sustentabilidade e desenvolvimento da usina hidrelétrica em Furnas: estudo de caso Cota 762. 55 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecânica) – Centro Universitário do Sul de Minas.

Operador Nacional do Sistema Elétrico (2022). Previsão de carga para o planejamento anual da operação energética ciclo 2022 (2022-2026). http://www.ons.org.br/paginas/energia-no-futuro/suprimento-energetico>.

Pereira, E. B., Martins, F. R., Gonçalves, A. R., Costa, R. S., Lima, F. L., Rüther, R., Abreu, S. L., Tiepolo, G. M., Pereira, S. V. & Souza, J. G. (2017). Atlas brasileiro de energia solar. 2 ed. São José dos Campos: INPE.

Pereira, N. X. (2019) Desafios e perspectivas da energia solar fotovoltaica no Brasil: geração distribuída vs geração centralizada. 86 f. Dissertação (Mestrado em Ciências Ambientais - (UNESP).

Pinto, L. I. C., Martins, F. R. & Pereira, E. B. (2017). O mercado brasileiro da energia eólica, impactos sociais e ambientais. Revista Ambiente e Água, 12 (06), 1082-1100.

Portal Solar. (2020) Investimentos de Furnas em geração solar distribuída devem totalizar cerca de R$ 16 milhões. https://www.portalsolar.com.br/blog-solar/energia-renovavel/investimentos-de-furnas-em-geracao-solar-distribuida-devem-totalizar-cerca-de-r-16-milhoes.html>.

Rashid, Y., Rashid, A., Warraich, M. A., Sabir, S. S. & Waseen, A. (2019). Case Study Method: a step-by-step guide for business researchers. International Journal of Qualitative Methods, 18.

Rezaeiha, A., Kalkman, I., Montazeri, H. & Blocken, B. (2017). Effect of the shaft on the aerodynamic performance of an urban vertical axis wind turbine: a numerical study. Energy Conversion and Management, 149, 616-630.

Shahsavari, A. & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275-291.

Silva, F. E. M., Oliveira, L. M., Antunes, L. F. M. & Sá Júnior, E. M. (2022). Previsão de geração de energia elétrica renovável em curto prazo no estado do Ceará utilizando modelo de regressão prophet. Research, Society and Development, 11(07).

Silva, S. S. F., Ramalho. A. M. C., Alves, A. C., Sousa, C. M. & Silva, A. S. L. (2018). Energia eólica e complementaridade energética: estratégia e desafio para o desenvolvimento sustentável na região Nordeste do Brasil. Qualitas, v. 09 (03).

Soares, Y. H. O. (2020). Energias alternativas no nordeste brasileiro: um olhar sobre políticas e experiências adotadas pelos estados. 64 f. Trabalho de Conclusão de Curso (Bacharelado em Economia) - Universidade Federal de Alagoas.

Solaun, K. & Cerdá, E. (2019). Climate change impacts on renewable energy generation. A review of quantitative projections. Renewable and Sustainable Energy, 116, e109415, 2019.

Sousa, A. S., Oliveira, G. S. & Alves, L. H. (2021). A pesquisa bibliográfica: princípios e fundamentos. Cadernos da Fucamp, 20(43), 64-83.

Souza, A. B. B., Silva, E. P., Silva, D. B., Souza Filho, H. N., Pimentel, J. M., Furtado, J. C. & Riedel, V. F. (2020). Sinergia entre o hidrogênio eletrolítico produzido por energia solar fotovoltaica e sua aplicação em veículos leves. In: VIII Congresso Brasileiro de Energia Solar, 2020, Fortaleza. Anais [...].

Timmermann, A., An, S., Kug, J.S., Jin, F.F., Cai, W., Capotondi, A., Cobb, K. M., Lengaigne, M., Mc Phaden, M. J., Stuecker, M. F., Stein, K., Wittenberg, A. T., Yun, K.S., Bayr, T., Chen, H. C., Chikamoto, Y., Dewitte, B., Dommenget, D., & Zhang, X. (2018). El Niño–Southern Oscillation complexity. Nature, 559, 535–545.

Traldi, M. (2018). Os impactos sócioeconômicos e territoriais resultantes da implantação e operação de parques eólicos no semiárido brasileiro. Scripta Nova, 22(89).

Turon, K. (2020). Hydrogen-powered vehicles in urban transport systems – current state and development. Transportation Research Procedia, 45, 835-841.

Veers, P., Dykes, K., Lantz, E., Barth, S., Botasso, C. L, Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomaki, V., Lundquist, J. K., Manwell, J., Marquis, M., Maneveau, C., Moriarty, P., Munduate, X., Muskulus, M., … Wiser, R. (2019). Grand challenges in the science of wind energy. Science, 366(6464).

Wei, Y.M., Han, R., Wang, C., Yu, B., Liang, O. M., Chen, X., Chang, J., Zhao, Q., Liao, H., Tang, B., Yan, J., Cheng, L. & Yang, Z. (2020). Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era. Nature Comunications,11(1624).

World Wind Energy Association (WWEA). (2021). WWEAwebinar: Wind Power Around the World, 2021. https://wwindea.org/wind-power-around-the-world-wweawebinar-on-27-april>.

Xiao, M., Wang, Z., Lyu, M., Lou, B., Wang, S., Liu, G., Cheng, H. M. & Wang, L. (2019). Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 31, e. 1801369.

Xu, L., Li, S., Jiang, J., Liu, T., Wu, T., Wang, J. & Li, X. (2020). The influence of dust deposition on the temperature of soiling photovoltaic glass under lighting and windy conditions. Solar Energy, 199, 491-496.

Yin, R. K. (2018). Case Study Research: Design and Methods. (6a ed.) Thousand Oaks (CA): SAGE.

Zhang, H., Mu, J., McCarl, B. & Yu, J. (2022). The impact of climate change on global energy use. Mitigation and Adaptation Strategies for Global Change, 27(09).

Downloads

Publicado

16/12/2022

Como Citar

SILVA, R. M. da . Complexo Industrial de Furnas a busca pela diversificação da matriz energética através das fontes eólica e fotovoltaica: breve estudo de caso. Research, Society and Development, [S. l.], v. 11, n. 16, p. e528111637896, 2022. DOI: 10.33448/rsd-v11i16.37896. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37896. Acesso em: 30 jun. 2024.

Edição

Seção

Artigos de Revisão