Avaliação da influência de aromas gerados por leveduras não convencionais utilizadas na produção de cerveja: uma revisão
DOI:
https://doi.org/10.33448/rsd-v11i17.38868Palavras-chave:
Aromas; Leveduras não convencionais; Cerveja.Resumo
A modernidade cria tendências que promovem demandas por parte dos consumidores e fabricantes, na produção de cerveja não foi diferente. Em busca de uma maior complexidade perceptual, as leveduras não convencionais surgem como alternativas para o enriquecimento dos atributos da bebida. A utilização das não-Saccharomyces no processo de fermentação tem proporcionado a maior presença de álcoois superiores, ésteres e fenóis voláteis, além de ácidos carboxílicos e aldeídos, os quais originam um buquê sensorial. Neste contexto, este trabalho tem a finalidade de apresentar uma revisão de literatura referente ao perfil aromático das cervejas utilizando leveduras não convencionais sob fermentação isolada ou mista. O levantamento foi realizado em periódico internacional entre os anos de 2016 a 2022, no qual foram obtidos nove artigos sobre o tema. As pesquisas selecionadas estudaram oito gêneros (Torulaspora, Pichia, Brettanomyces, Hanseniaspora, Zygotorulaspora, Zygoascus, Kazachstania e Saprochaete) e catorze espécies de microrganismos. Como resultado destaca-se a capacidade de assimilar açúcares, tolerância à temperatura e resistência ao etanol. Identificou-se que diferentes substâncias proporcionam olências distintas, entre elas, frutado, floral e adocicado são predominantes, além de notas alcóolicas, de cereais, folhas verdes, entre outros. Também se notou odores desagradáveis devidos à concentração de diacetil e metional, originando aromas de manteiga, legumes cozidos e rançoso. Portanto, a revisão torna-se uma ferramenta para entender os pontos relevantes das leveduras e quais são as adequadas para o estilo de cerveja desejável.
Referências
Albertin, W., Setati, M. E., Miot-Sertier, C., Mostert, T. T., Colonna-Ceccaldi, B., Coulon, J., ... & Masneuf-Pomarede, I. (2016). Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering. Frontiers in microbiology, 6, 1569. https://doi.org/10.3389/fmicb.2015.01569.
Anderson, H. E., Santos, I. C., Hildenbrand, Z. L., & Schug, K. A. (2019). A review of the analytical methods used for beer ingredient and finished product analysis and quality control. Analytica Chimica Acta, 1085, 1-20. https://doi.org/10.1016/j.aca.2019.07.061.
de Araújo, C. M. G., Dalla Santa Spada, P. K., dos Reis, D. S., Carnieli, G. J., Dutra, S. V., & Vanderlinde, R. (2016). Influência climática em mostos e vinhos da safra 2015. Divulgação ABE.
Araújo, K., Berradre, M., Rivera, J., Cáceres, A., Páez, G., Aiello, C., & Pérez, D. (2016). Fusión intergénica de protoplastos de Saccharomyces cerevisiae y Hanseniaspora guillermondii. Revista de la Sociedad Venezolana de Microbiología, 36(2), 51-57. Recuperado de http://ve.scielo.org/scielo.php?pid=S1315-25562016000200005&script=sci_arttext.
Araújo, M. C., Brandão, Y. F. F., & de Lima Filho, H. J. (2022). Estudo comparativo de metodologias para a determinação do amargor em cervejas artesanais e industriais. Research, Society and Development, 11(12), e338111234363-e338111234363. https://doi.org/10.33448/rsd-v11i12.34363.
Basso, R. F., Alcarde, A. R., & Portugal, C. B. (2016). Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Research International, 86, 112-120. https://doi.org/10.1016/j.foodres.2016.06.002.
Benito, S. (2018). The impact of Torulaspora delbrueckii yeast in winemaking. Applied Microbiology and Biotechnology, 102(7), 3081-3094. https://doi.org/10.1007/s00253-018-8849-0.
Benucci, I., Cecchi, T., Lombardelli, C., Maresca, D., Mauriello, G., & Esti, M. (2021). Novel microencapsulated yeast for the primary fermentation of green beer: Kinetic behavior, volatiles and sensory profile. Food Chemistry, 340, 127900. https://doi.org/10.1016/j.foodchem.2020.127900.
Bogdan, P., & Kordialik-Bogacka, E. (2017). Alternatives to malt in brewing. Trends in Food Science & Technology, 65, 1-9. https://doi.org/10.1016/j.tifs.2017.05.001.
Bourbon-Melo, N., Palma, M., Rocha, M. P., Ferreira, A., Bronze, M. R., Elias, H., & Sá-Correia, I. (2021). Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to enhance the aromatic profile of beer in mixed-culture fermentation with Saccharomyces cerevisiae. Food Microbiology, 95, 103678. https://doi.org/10.1016/j.fm.2020.103678.
Buiatti, S., Guglielmotti, M., & Passaghe, P. (2021). Industrial beer versus craft beer: definitions and nuances. In Case Studies in the Beer Sector (pp. 3-13). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-817734-1.00001-X.
Byeon, Y. S., Hong, Y. S., Kwak, H. S., Lim, S. T., & Kim, S. S. (2022). Metabolite profile and antioxidant potential of wheat (Triticum aestivum L.) during malting. Food Chemistry, 384, 132443. https://doi.org/10.1016/j.foodchem.2022.132443.
Cadez, N., Bellora, N., Ulloa, R., Hittinger, C. T., & Libkind, D. (2019). Genomic content of a novel yeast species Hanseniaspora gamundiae sp. nov. from fungal stromata (Cyttaria) associated with a unique fermented beverage in Andean Patagonia, Argentina. PLoS One, 14(1), e0210792. https://doi.org/10.1371/journal.pone.0210792.
Canonico, L., Agarbati, A., Comitini, F., & Ciani, M. (2016). Torulaspora delbrueckii in the brewing process: A new approach to enhance bioflavour and to reduce ethanol content. Food microbiology, 56, 45-51. https://doi.org/10.1016/j.fm.2015.12.005.
Carvalho, N. B., Minim, L. A., Nascimento, M., de Castro Ferreira, G. H., & Minim, V. P. R. (2018). Characterization of the consumer market and motivations for the consumption of craft beer. British Food Journal, 120(2), 378-391. https://doi.org/10.1108/BFJ-04-2017-0205.
CervBrasil. (2017). Dados do setor cervejeiro nacional. Associação Brasileira da Cerveja. Recuperado de http://www.cervbrasil.org.br/novo_site/dados-do-setor/
Chamnipa, N., Thanonkeo, S., Klanrit, P., & Thanonkeo, P. (2018). The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Brazilian Journal of Microbiology, 49, 378-391. https://doi.org/10.1016/j.bjm.2017.09.002.
Chen, J., Yang, Y., Deng, Y., Liu, Z., Xie, J., Shen, S., ... & Jiang, Y. (2022). Aroma quality evaluation of Dianhong black tea infusions by the combination of rapid gas phase electronic nose and multivariate statistical analysis. Lwt, 153, 112496. https://doi.org/10.1016/j.lwt.2021.112496.
Colomer, M. S., Funch, B., & Forster, J. (2019). The raise of Brettanomyces yeast species for beer production. Current Opinion in Biotechnology, 56, 30-35. https://doi.org/10.1016/j.copbio.2018.07.009.
Dermeval, D., Coelho, J. A. P. M., & Bittencourt, I. I. (2020). Mapeamento sistemático e revisão sistemática da literatura em informática na educação. JAQUES, Patrícia Augustin; SIQUEIRA; Sean; BITTENCOURT, Ig; PIMENTEL, Mariano. (Org.) Metodologia de Pesquisa Científica em Informática na Educação: Abordagem Quantitativa. Porto Alegre: SBC.
Diderich, J. A., Weening, S. M., Van den Broek, M., Pronk, J. T., & Daran, J. M. G. (2018). Selection of Pof-Saccharomyces eubayanus variants for the construction of S. cerevisiae× S. eubayanus hybrids with reduced 4-vinyl guaiacol formation. Frontiers in Microbiology, 9, 1640. https://doi.org/10.3389/fmicb.2018.01640.
Durello, R. S., Silva, L. M., & Bogusz, S. (2019). Química do lúpulo. Química Nova, 42, 900-919. https://doi.org/10.21577/0100-4042.20170412.
Escribano-Viana, R., González-Arenzana, L., Garijo, P., Fernández, L., López, R., Santamaría, P., & Gutiérrez, A. R. (2022). Bioprotective Effect of a Torulaspora delbrueckii/Lachancea thermotolerans-Mixed Inoculum in Red Winemaking. Fermentation, 8(7), 337. https://doi.org/10.3390/fermentation8070337.
Farzaneh, V., Ghodsvali, A., Bakhshabadi, H., Zare, Z., & Carvalho, I. S. (2017). The impact of germination time on the some selected parameters through malting process. International journal of biological macromolecules, 94, 663-668. https://doi.org/10.1016/j.ijbiomac.2016.10.052.
Gamero, A., Quintilla, R., Groenewald, M., Alkema, W., Boekhout, T., & Hazelwood, L. (2016). High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation. Food Microbiology, 60, 147-159. https://doi.org/10.1016/j.fm.2016.07.006.
García, Y. M., Lemos, E. E. P. D., Ramos, A. L. C. C., Reina, L. D. C. B., Oliveira, A. F. D., Paula, A. C. C. F. F. D., ... & Melo, J. O. F. (2021). Extração e análise de compostos orgânicos voláteis por SPME-HS e GC-MS–um breve referencial teórico. Ciências Agrárias: O avanço da ciência no Brasil, 1(4), 68-83. https://doi.org/10.37885/210504640.
Gibson, B., Dahabieh, M., Krogerus, K., Jouhten, P., Magalhães, F., Pereira, R., ... & Vidgren, V. (2020). Adaptive laboratory evolution of ale and lager yeasts for improved brewing efficiency and beer quality. Annual review of food science and technology, 11, 23-44. https://doi.org/10.1146/annurev-food-032519-051715
Giorgi, V. V. & Júnior, J. D. O. C. (2016). A Produção Cervejeira como Patrimônio Intângivel. Cultura Histórica & Patrimônio, 3(2), 140-164. Recuperado de https://www.semanticscholar.org/paper/A-PRODU%C3%87%C3%83O-CERVEJEIRA-COMO-PATRIM%C3%94NIO-INTANG%C3%8DVEL-Giorgi J%C3%BAnior/ea35c2b60a5c4f6eafb92e7f8b01a359e8e00cd2.
Gschaedler, A. (2017). Contribution of non-conventional yeasts in alcoholic beverages. Current Opinion in Food Science, 13, 73-77. https://doi.org/10.1016/j.cofs.2017.02.004
Harrison, M. A. & Albanese, J. B. (2017). Beer/brewing. Encyclopedia of Microbiology, Four-Volume Set, 457-477. https://doi.org/10.1016/B978-0-12-809633-8.13014-6.
Has, M., Facco, L. N., de Paula Rosa, M., & Pietrowski, G. D. A. M. (2020). Caracterização morfológica e fisiológica de leveduras submetidas à preservação prolongada por congelamento a-80ºC e liofilização. Revista Brasileira de Tecnologia Agroindustrial, 14(1). 1
Holt, S., Mukherjee, V., Lievens, B., Verstrepen, K. J., & Thevelein, J. M. (2018). Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiology, 72, 55-66. https://doi.org/10.1016/j.fm.2017.11.008.
Hornsey, I. S. (2016). Beer: History and types. Encyclopedia of Food and Health, 345-354. https://doi.org/10.1016/B978-0-12-384947-2.00057-X
Hu, K., Jin, G. J., Mei, W. C., Li, T., & Tao, Y. S. (2018). Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chemistry, 239, 495-501. https://doi.org/10.1016/j.foodchem.2017.06.151.
Johansson, L., Nikulin, J., Juvonen, R., Krogerus, K., Magalhães, F., Mikkelson, A., ... & Gibson, B. (2021). Sourdough cultures as reservoirs of maltose-negative yeasts for low-alcohol beer brewing. Food Microbiology, 94, 103629. https://doi.org/10.1016/j.fm.2020.103629.
Kucharczyk, K., & Tuszyński, T. (2017). The effect of wort aeration on fermentation, maturation and volatile components of beer produced on an industrial scale. Journal of the Institute of Brewing, 123(1), 31-38. https://doi.org/10.1002/jib.392.
Lai, Y. T., Hsieh, C. W., Lo, Y. C., Liou, B. K., Lin, H. W., Hou, C. Y., & Cheng, K. C. (2022). Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making. LWT, 154, 112653. https://doi.org/10.1016/j.lwt.2021.112653.
Larroque, M. N., Carrau, F., Fariña, L., Boido, E., Dellacassa, E., & Medina, K. (2021). Effect of Saccharomyces and non-Saccharomyces native yeasts on beer aroma compounds. International Journal of Food Microbiology, 337, 108953. https://doi.org/10.1016/j.ijfoodmicro.2020.108953.
Lauterbach, A., Usbeck, J. C., Behr, J., & Vogel, R. F. (2017). MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles. PloS one, 12(8), e0181694. https://doi.org/10.1371/journal.pone.0181694.
Lentz, M. (2018). The impact of simple phenolic compounds on beer aroma and flavor. Fermentation, 4(1), 20. https://doi.org/10.3390/fermentation4010020.
Li, N., Wang, Q. Q., Xu, Y. H., Li, A. H., & Tao, Y. S. (2020). Increased glycosidase activities improved the production of wine varietal odorants in mixed fermentation of P. fermentans and high antagonistic S. cerevisiae. Food Chemistry, 332, 127426. https://doi.org/10.1016/j.foodchem.2020.127426.
Li, Z., Song, K., Li, H., Ma, R., & Cui, M. (2019). Effect of mixed Saccharomyces cerevisiae Y10 and Torulaspora delbrueckii Y22 on dough fermentation for steamed bread making. International journal of food microbiology, 303, 58-64. https://doi.org/10.1016/j.ijfoodmicro.2019.05.009.
Liguori, L., De Francesco, G., Russo, P., Perretti, G., Albanese, D., & Di Matteo, M. (2016). Quality attributes of low-alcohol top-fermented beers produced by membrane contactor. Food and Bioprocess Technology, 9(1), 191-200. https://doi.org/10.1007/s11947-015-1612-y.
Lin, H., Liu, Y., He, Q., Liu, P., Che, Z., Wang, X., & Huang, J. (2019). Characterization of odor components of Pixian Douban (broad bean paste) by aroma extract dilute analysis and odor activity values. International Journal of Food Properties, 22(1), 1223-1234. https://doi.org/10.1080/10942912.2019.1636816.
Lin, M. M. H., Boss, P. K., Walker, M. E., Sumby, K. M., & Jiranek, V. (2022). Influence of Kazachstania spp. on the chemical and sensory profile of red wines. International Journal of Food Microbiology, 362, 109496. https://doi.org/10.1016/j.ijfoodmicro.2021.109496.
Lobo, A. P., Antón-Díaz, M. J., Alonso, J. J. M., & Valles, B. S. (2016). Characterization of Spanish ciders by means of chemical and olfactometric profiles and chemometrics. Food Chemistry, 213, 505-513. https://doi.org/10.1016/j.foodchem.2016.06.063.
Martin, V., Valera, M. J., Medina, K., Boido, E., & Carrau, F. (2018). Oenological impact of the Hanseniaspora/Kloeckera yeast genus on wines—A review. Fermentation, 4(3), 76. https://doi.org/10.3390/fermentation4030076.
Masneuf-Pomarede, I., Bely, M., Marullo, P., & Albertin, W. (2016). The genetics of non-conventional wine yeasts: current knowledge and future challenges. Frontiers in microbiology, 6, 1563. https://doi.org/10.3389/fmicb.2015.01563.
Matraxia, M., Alfonzo, A., Prestianni, R., Francesca, N., Gaglio, R., Todaro, A., ... & Moschetti, G. (2021). Non-conventional yeasts from fermented honey by-products: Focus on Hanseniaspora uvarum strains for craft beer production. Food Microbiology, 99, 103806. https://doi.org/10.1016/j.fm.2021.103806.
Mello, J. A. V. B., & Silva, J. L. N. (2020). Requisitos de produto para um projeto de cerveja artesanal. Innovar, 30(77), 39-52. https://doi.org/10.15446/innovar. v30n77.87428.
Methner, Y., Hutzler, M., Matoulková, D., Jacob, F., & Michel, M. (2019). Screening for the brewing ability of different non-Saccharomyces yeasts. Fermentation, 5(4), 101. https://doi.org/10.3390/fermentation5040101.
Michel, M., Kopecká, J., Meier‐Dörnberg, T., Zarnkow, M., Jacob, F., & Hutzler, M. (2016). Screening for new brewing yeasts in the non‐Saccharomyces sector with Torulaspora delbrueckii as model. Yeast, 33(4), 129-144. https://doi.org/10.1002/yea.3146.
Michel, M., Meier‐Dörnberg, T., Jacob, F., Methner, F. J., Wagner, R. S., & Hutzler, M. (2016). Pure non‐Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. Journal of the Institute of Brewing, 122(4), 569-587. https://doi.org/10.1002/jib.381.
Ministério da Agricultura, Pecuária e Abastecimento. (2022). Anuário da cerveja: 2021. Secretaria de Defesa Agropecuária Departamento de Inspeção de Produtos de Origem Vegetal. Brasília, DF: Ministério da Agricultura, Pecuária e Abastecimento. Retirado de https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/arquivos/anuario-da-cerveja-2021.pdf
Morcol, T. B., Negrin, A., Matthews, P. D., & Kennelly, E. J. (2020). Hop (Humulus lupulus L.) terroir has large effect on a glycosylated green leaf volatile but not on other aroma glycosides. Food chemistry, 321, 126644. https://doi.org/10.1016/j.foodchem.2020.126644.
Morado, R. (2017). Larousse da cerveja: A história e as curiosidades de uma das bebidas mais populares do mundo. (1ª ed.). São Paulo: Alaúde Editorial.
Muller, C., Neves, L. E., Gomes, L., Guimarães, M., & Ghesti, G. (2019). Processes for alcohol-free beer production: a review. Food Science and Technology, 40, 273-281. https://doi.org/10.1590/fst.32318.
Nagatsuka, Y., Ninomiya, S., Kiyuna, T., Kigawa, R., Sano, C., & Sugiyama, J. (2016). Yamadazyma kitorensis fa, sp. nov. and Zygoascus biomembranicola fa, sp. nov., novel yeasts from the stone chamber interior of the Kitora tumulus, and five novel combinations in Yamadazyma and Zygoascus for species of Candida. International Journal of Systematic and Evolutionary Microbiology, 66(4), 1692-1704. https://doi.org/10.1099/ijsem.0.000930.
Neves, N. A, & Stringheta, P. C. (2021). Caracterização da fração volátil minoritária de bebida alcoólica fermentada de jabuticaba (Plinia jaboticaba) por CG/MS. Research, Society and Development, 10(4), e41010414122-e41010414122. http://dx.doi.org/10.33448/rsd-v10i4.14122.
Ndubuisi, I. A., Qin, Q., Liao, G., Wang, B., Moneke, A. N., Ogbonna, J. C., ... & Fang, W. (2020). Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnology for biofuels, 13(1), 1-12. https://doi.org/10.1186/s13068-020-01729-5.
Nikulin, J., Eerikäinen, R., Hutzler, M., & Gibson, B. (2020). Brewing characteristics of the maltotriose-positive yeast Zygotorulaspora florentina isolated from oak. Beverages, 6(4), 58. https://doi.org/10.3390/beverages6040058.
de Paulo, F. J., Simiqueli, A. A., Tabet, C. J., Crepalde, L. T., Minim, L. A., & Minim, V. P. R. (2022). The effect of background music on sensory evaluation of craft beer. Research, Society and Development, 11(9), e27611931620-e27611931620. http://dx.doi.org/10.33448/rsd-v11i9.31620.
Postigo, V., Schuurman, T. E., & Arroyo, T. (2022). Non-Conventional Yeast: Behavior under Pure Culture, Sequential and Aeration Conditions in Beer Fermentation. Foods, 11(22), 3717. https://doi.org/10.3390/foods11223717.
Rettberg, N., Biendl, M., & Garbe, L. A. (2018). Hop aroma and hoppy beer flavor: chemical backgrounds and analytical tools—a review. Journal of the American Society of Brewing Chemists, 76(1), 1-20. https://doi.org/10.1080/03610470.2017.1402574.
Ribeiro, E. S., de Farias, B. S., da Silva Menegazzi, G., de Almeida Pinto, L. A., & Diaz, P. S. (2021). Produção de cerveja e análise sensorial: um referencial teórico. Ciência e Tecnologia de alimentos: pesquisas e práticas contemporâneas, v. 2(47), 656-670. https://doi.org/10.37885/210805711.
Shurson, G. C. (2018). Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal feed science and technology, 235, 60-76. https://doi.org/10.1016/j.anifeedsci.2017.11.010.
Silva, H. A., Leite, M. A., & Paula, A. D. (2016). Cerveja e sociedade. Contextos da Alimentação–Revista de Comportamento, Cultura e Sociedade, 4(2). Recuperado de http://www3.sp.senac.br/hotsites/blogs/revistacontextos/wp-content/uploads/2016/03/73_CA_artigo_revisado.pdf.
Silva, M. L. A. D., Costa, R. B. A. D., Monteiro, A. C. P., Santos, J. S. D., Silva, B. D. S. D., Santos, L. D. J. D. C., ... & Junqueira, M. D. S. (2021). Perfil de compostos voláteis de um novo estilo de cerveja. Ciências Agrárias: o avanço da ciência no Brasil, 291-308. https://doi.org/10.37885/210504810.
da Silva, P. A., Florêncio, N. B., Santos, G. D. M., Melo, E. J. V., Gusmão, N. B. (2022). Potencial Tecnológico de Leveduras Não-Saccharomyces. Research, Society and Development, 11(10), e322111032754-e322111032754. http://dx.doi.org/10.33448/rsd-v11i10.32754.
da Silva, V. D. M., da Luz, I. T., Godoy, J. S., Lajús, C. R., Colpani, G. L., Mello, J. M. M., ... & Dalcanton, F. (2022). Desenvolvimento de cerveja estilo Catharina Sour de frutas vermelhas utilizando Lactobacillus plantarum. Research, Society and Development, 11(9), e59111932009-e59111932009. http://dx.doi.org/10.33448/rsd-v11i9.32009
Sorbo, A., & Broetto, F. (2019). Caracterização dos antioxidantes em cervejas tipo pilsen suplementadas com polpa de maracujá. Energia na Agricultura, 34(3), 441-446. http://dx.doi.org/10.17224/EnergAgric.2019v34n3p441-446.
Souza, D. S. R., & Favero, M. D. (2017). Correlação entre a redução da carga microbiológica e a inativação da enzima invertase na etapa de pasteurização da cerveja. Revista Mundi Meio Ambiente e Agrárias. Curitiba, PR, 2(1), 15.
Smith, B. D., & Divol, B. (2018). The carbon consumption pattern of the spoilage yeast Brettanomyces bruxellensis in synthetic wine-like medium. Food microbiology, 73, 39-48. https://doi.org/10.1016/j.fm.2017.12.011.
Stewart, G. G. (2016). Beer: Raw Materials and Wort Production. Encyclopedia of Food and Health, 355-363. http://dx.doi.org/10.1016/B978-0-12-384947-2.00058-1.
Stewart, G. G. (2017). The production of secondary metabolites with flavour potential during brewing and distilling wort fermentations. Fermentation, 3(4), 63. https://doi.org/10.3390/fermentation3040063.
Tan, M., Caro, Y., Shum-Cheong-Sing, A., Robert, L., François, J. M., & Petit, T. (2021). Evaluation of mixed-fermentation of Saccharomyces cerevisiae with Saprochaete suaveolens to produce natural fruity beer from industrial wort. Food Chemistry, 346, 128804. https://doi.org/10.1016/j.foodchem.2020.128804
Toh, D. W. K., Chua, J. Y., & Liu, S. Q. (2018). Impact of simultaneous fermentation with Saccharomyces cerevisiae and Torulaspora delbrueckii on volatile and non-volatile constituents in beer. LWT, 91, 26-33. https://doi.org/10.1016/j.lwt.2018.01.025.
Tronchoni, J., Curiel, J. A., Morales, P., Torres-Pérez, R., & Gonzalez, R. (2017). Early transcriptional response to biotic stress in mixed starter fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii. International journal of food microbiology, 241, 60-68. https://doi.org/10.1016/j.ijfoodmicro.2016.10.017.
Tyrawa, C., Preiss, R., Armstrong, M., & van der Merwe, G. (2019). The temperature dependent functionality of Brettanomyces bruxellensis strains in wort fermentations. Journal of the Institute of Brewing, 125(3), 315-325. https://doi.org/10.1002/jib.565.
Varela, C. (2016). The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Applied Microbiology and Biotechnology, 100(23), 9861-9874. https://doi.org/10.1007/s00253-016-7941-6.
Venturini Filho, W. G. (2021). Bebidas alcoólicas: ciência e tecnologia. São Paulo: Blucher.
Yan, G., Zhang, B., Joseph, L., & Waterhouse, A. L. (2020). Effects of initial oxygenation on chemical and aromatic composition of wine in mixed starters of Hanseniaspora vineae and Saccharomyces cerevisiae. Food microbiology, 90, 103460. https://doi.org/10.1016/j.fm.2020.103460.
Yin Tan, W., Li, M., Devkota, L., Attenborough, E., & Dhital, S. (2021). Mashing performance as a function of malt particle size in beer production. Critical Reviews in Food Science and Nutrition, 1-16. https://doi.org/10.1080/10408398.2021.2018673.
Zdaniewicz, M., Pater, A., Hrabia, O., Duliński, R., & Cioch-Skoneczny, M. (2020). Tritordeum malt: An innovative raw material for beer production. Journal of Cereal Science, 96, 103095. https://doi.org/10.1016/j.jcs.2020.103095.
Zheng, Y., Sun, B., Zhao, M., Zheng, F., Huang, M., Sun, J., ... & Li, H. (2016). Characterization of the key odorants in Chinese zhima aroma-type baijiu by gas chromatography–olfactometry, quantitative measurements, aroma recombination, and omission studies. Journal of Agricultural and Food Chemistry, 64(26), 5367-5374. https://doi.org/10.1021/acs.jafc.6b01390.
Zhong, W., Liu, S., Yang, H., & Li, E. (2021). Effect of selected yeast on physicochemical and oenological properties of blueberry wine fermented with citrate-degrading Pichia fermentans. LWT, 145, 111261. https://doi.org/10.1016/j.lwt.2021.111261.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Ricardo Lavor Pina; Délis Cristina Palheta Cruz; Marlice Cruz Martelli
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.