Aplicação da espectroscopia vibracional no infravermelho, acoplada a análises estatísticas multivariadas, para a análise dos efeitos do uso de herbicidas à base do Diuron em feijões de tipo de grão carioca

Autores

DOI:

https://doi.org/10.33448/rsd-v12i11.43753

Palavras-chave:

Diuron; Herbicida; Plantas; Espectroscopia no Infravermelho; FTIR-UATR; HCA; PCA.

Resumo

O Diuron é um herbicida do grupo químico ureia e, mesmo sendo considerado tóxico e persistente no meio ambiente, está entre os herbicidas comercializados mais vendidos no Brasil. O objetivo deste trabalho é analisar os espectros infravermelhos de folhas de plantas tratadas por um herbicida à base de Diuron e os do herbicida em si. Para isso, foram realizados dois plantios de feijão de tipo de grão Carioca, sendo que, no primeiro plantio, o herbicida foi aplicado no solo em quantidades controladas e, no segundo plantio, o herbicida foi pulverizado nas folhas do feijão, utilizando dosagens iguais às do primeiro plantio. No primeiro plantio, foram obtidos 13 espectros no infravermelho das folhas, utilizando as técnicas de preparação de pastilhas e o espectrofotômetro Spectrum 2000, da PerkinElmer. No segundo plantio, foram obtidos 25 espectros das folhas, utilizando as técnicas de UATR e o espectrofotômetro Spectrum Spotlight 400 FTIR, da PerkinElmer. Utilizando os espectros obtidos do segundo plantio, pode-se demonstrar, que a lavagem com água das folhas pulverizadas, mostrou-se eficaz para a remoção do herbicida à base do Diuron. A banda em 1385 cm-1 mostrou-se sensível à quantidade de herbicida aplicada no solo, pois sua intensidade, somente no primeiro plantio, mostrou uma alteração significativa com a quantidade variada de herbicida aplicado. Portanto, pode-se sugerir, que a banda em 1385 cm-1 pode estar relacionada à presença do herbicida ou à alteração estrutural da planta.

Referências

Akcha, F., Barranger, A., & Bachère, E. (2021). Genotoxic and epigenetic effects of Diuron in the Pacific oyster: in vitro evidence of interaction between DNA damage and DNA methylation. Environmental Science and Pollution Research, 28(7), 8266–8280. https://doi.org/10.1007/S11356-020-11021-6/FIGURES/6

Almeida, J. T. F. de, Lander, V. A. R. K., Martins, J. M. de S., Carvalho, K. A., Barbosa, A. B., Gonçalves, I. K. C., Monteiro, P. H. T., Mauro, M., & Moreira, D. R. (2023). Análise do perfil do uso de agrotóxicos no estado do Mato Grosso Do Sul, políticas públicas relacionadas e impactos na saúde da população. Revista Master - Ensino, Pesquisa e Extensão, 8(15). https://doi.org/10.47224/REVISTAMASTER.V8I15.264

ANVISA - Agência Nacional de Vigilância Sanitária. (2012). Monografias de agrotóxicos. http://portal.anvisa.gov.br/wps/portal/anvisa/home/agrotoxicotoxicologia/monografiasdeagrotóxicos

Barbosa, L. C. de A. (2007). Espectroscopia no infravermelho: na caracterização de compostos orgânicos. Ed. UFV.

Bayu, A., Nandiyanto, D., Ragadhita, R., & Fiandini, M. (2023). Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indonesian Journal of Science and Technology, 8(1), 113–126. https://doi.org/10.17509/ijost.v8i1.53297

Bueno, S. G. S. (2021). Indicadores da cadeia de agrotóxicos no Brasil entre os anos de 2015 e 2019 [Dissertação de mestrado profissional em bioenergia e grãos, Instituto Federal Goiano]. https://repositorio.ifgoiano.edu.br/handle/prefix/2442

Castilhos, D., Dombroski, J. L. D., Bergamo, G. C., Gramacho, K. P., & Gonçalves, L. S. (2019). Neonicotinoids and fipronil concentrations in honeybees associated with pesticide use in Brazilian agricultural areas. Apidologie, 50(5), 657–668. https://doi.org/10.1007/S13592-019-00676-X/TABLES/3

Cavalcante, J. K. G., Mendes, K. F., Inoue, M. H., dos Santos, P. R. J., Fonseca, A. P. da S., & Franco, E. L. P. (2018). Eficácia e seletividade do metribuzin e Diuron em pré-transplantio do tomate sob diferentes coberturas vegetais. Revista Brasileira de Herbicidas, 17(4), 611–615. https://doi.org/10.7824/rbh.v17i4.615

Da Rocha, M. S., Arnold, L. L., Dodmane, P. R., Pennington, K. L., Qiu, F., De Camargo, J. L. V., & Cohen, S. M. (2013). Diuron metabolites and urothelial cytotoxicity: In vivo, in vitro, and molecular approaches. Toxicology, 314(2–3), 238–246. https://doi.org/10.1016/J.TOX.2013.10.005

Depciuch, J., Kasprzyk, I., Sadik, O., & Parlińska-Wojtan, M. (2017). FTIR analysis of molecular composition changes in hazel pollen from unpolluted and urbanized areas. Aerobiologia, 33(1), 1–12. https://doi.org/10.1007/S10453-016-9445-3/TABLES/4

Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa. Artes Médicas.

Field, J. A., Reed, R. L., Sawyer, T. E., Griffith, S. M., & Wigington, P. J. (2003). Diuron Occurrence and Distribution in Soil and Surface and Ground Water Associated with Grass Seed Production. Journal of Environmental Quality, 32(1), 171–179. https://doi.org/10.2134/JEQ2003.171

Gao, S., Jiang, J. Y., Liu, Y. Y., Fu, Y., Zhao, L. X., Li, C. Y., & Ye, F. (2019). Enhanced Solubility, Stability, and Herbicidal Activity of the Herbicide Diuron by Complex Formation with β-Cyclodextrin. Polymers. 11(9), 1396. https://doi.org/10.3390/POLYM11091396

Giacomazzi, S., & Cochet, N. (2004). Environmental impact of Diuron transformation: a review. Chemosphere, 56(11), 1021–1032. https://doi.org/10.1016/J.CHEMOSPHERE.2004.04.061

Huovinen, M., Loikkanen, J., Naarala, J., & Vähäkangas, K. (2015). Toxicity of Diuron in human cancer cells. Toxicology in Vitro, 29(7), 1577–1586. https://doi.org/10.1016/J.TIV.2015.06.013

IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. (2020). Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil. http://ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos

Li, J., Zhang, W., Lin, Z., Huang, Y., Bhatt, P., & Chen, S. (2021). Emerging Strategies for the Bioremediation of the Phenylurea Herbicide Diuron. Frontiers in Microbiology, 12. https://doi.org/10.3389/FMICB.2021.686509/FULL

Liu, X., Renard, C. M. G. C., Bureau, S., & Le Bourvellec, C. (2021). Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydrate Polymers, 262, 117935. https://doi.org/10.1016/J.CARBPOL.2021.117935

Lopes, C. V. A., & De Albuquerque, G. S. C. (2021). Desafios e avanços no controle de resíduos de agrotóxicos no Brasil: 15 anos do Programa de Análise de Resíduos de Agrotóxicos em Alimentos. Cadernos de Saúde Pública, 37(2), e00116219. https://doi.org/10.1590/0102-311X00116219

Magalhães, S., Goodfellow, B. J., & Nunes, A. (2021). FTIR spectroscopy in biomedical research: how to get the most out of its potential. Applied Spectroscopy Reviews, 56(8–10), 869–907. https://doi.org/10.1080/05704928.2021.1946822

Manonmani, G., Sandhiya, L., & Senthilkumar, K. (2020). Mechanism and kinetics of Diuron oxidation by hydroxyl radical addition reaction. Environmental Science and Pollution Research, 27(11), 12080–12095. https://doi.org/10.1007/S11356-020-07806-4/FIGURES/10

Marchi, G., Marchi, E. C. S., & Guimarães, T. G. (2008). Herbicidas: mecanismos de ação e uso.

Marques, C. M. S., Pedroso, J. T., Bhattacharjee, T., Pupin, B., Pinto, J. G., Ferreira-Strixino, J., & Sakane, K. K. (2023). Fourier Transform Infrared Spectroscopy (FT-IR) of Pseudomonas aeruginosa post photodynamic therapy with Curcumin in vitro. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 285, 121916. https://doi.org/10.1016/J.SAA.2022.121916

Mendes, E., & Duarte, N. (2021). Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Foods. 477, 10(2), 477. https://doi.org/10.3390/FOODS10020477

Mohammed, A. M., Huovinen, M., & Vähäkangas, K. H. (2020). Toxicity of Diuron metabolites in human cells. Environmental Toxicology and Pharmacology, 78, 103409. https://doi.org/10.1016/J.ETAP.2020.103409

Musumeci, M. R., Nakgawa, L. E., Luchini, L. C., Matallo, M. B., & Andrea, M. M. de. (1995). Degradação do Diuron-14C em solo e em plantas de cana-de-açucar (Saccharum spp.). Pesquisa Agropecuária Brasileira, 30(6), 775–778. https://seer.sct.embrapa.br/index.php/pab/article/view/4361

Oparin, R. D., Ivlev, D. V., & Kiselev, M. G. (2020). Conformational equilibria of pharmaceuticals in supercritical CO2, IR spectroscopy and quantum chemical calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118072. https://doi.org/10.1016/J.SAA.2020.118072

Pereira, D. C., Pupin, B., & Sakane, K. K. (2021). Evaluation of hydrogel use in the development of Rapanea ferruginea with water restriction by vibrational Fourier Transform Infrared Spectroscopy (FTIR-UATR). Revista Ambiente & Água, 16(5), e2744. https://doi.org/10.4136/AMBI-AGUA.2744

Pinheiro, A., Moraes, J. C. S., & da Silva, M. R. (2011). Pesticidas no perfil de solos em áreas de plantação de cebolas em Ituporanga, SC. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(5), 533–538. https://doi.org/10.1590/S1415-43662011000500015

Ramamurthy, N., Biophysics, S. K.-R. journal of, & 2007, undefined. (2007). Fourier transform infrared spectroscopic analysis of a plant (Calotropis gigantea Linn) from an industrial village, Cuddalore dt, Tamilnadu, India. Romanian Journal of Biophysics, 17(4), 269–276. https://www.rjb.ro/articles/192/art%2006%20Ramamurthy%20doc.pdf

Rigotto, R. M., Vasconcelos, D. P., & Rocha, M. M. (2014). Uso de agrotóxicos no Brasil e problemas para a saúde pública. Cadernos de Saúde Pública, 30(7), 1360–1362. https://doi.org/10.1590/0102-311XPE020714

Roque, M. R. D. A., & De Melo, I. S. (2000). Isolamento e caracterização de bactérias degradadoras do herbicida Diuron. Scientia Agricola, 57(4), 723–728. https://doi.org/10.1590/S0103-90162000000400020

Salomão, P. E. A., Ferro, A. M. S., & Ruas, W. F. (2020). Herbicides in Brazil: a brief review. Research, Society and Development, 9(2), e32921990–e32921990. https://doi.org/10.33448/RSD-V9I2.1990

Simões, M. da S., Bracht, L., Parizotto, A. V., Comar, J. F., Peralta, R. M., & Bracht, A. (2017). The metabolic effects of Diuron in the rat liver. Environmental Toxicology and Pharmacology, 54, 53–61. https://doi.org/10.1016/J.ETAP.2017.06.024

Smith, B. (2011). Fundamentals of Fourier transform infrared spectroscopy. CRC press.

Soares, A., Dorlivete, P., Shitsuka, M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.

Tandon, S., & Pant, R. (2019). Kinetics of Diuron under aerobic condition and residue analysis in sugarcane under subtropical field conditions. Environmental Technology, 40(1), 86–93. https://doi.org/10.1080/09593330.2017.1380709

Vieira, K. C., Silva, C. T., da Silva, M. M., & da Costa, A. S. V. (2020). Potencial de contaminação ambiental dos herbicidas utilizados nas culturas do milho, soja e cana de açúcar. Research, Society and Development, 9(9), e417997442. https://doi.org/10.33448/rsd-v9i9.7442

Vieira, R. F. (1999). Parâmetros microbiológicos indicadores do efeito do Diuron sobre a microflora do solo. Pesquisa Agropecuária Brasileira, 34(5), 897–902. https://doi.org/10.1590/S0100-204X1999000500024

Walsh, M. G., & Shepherd, K. D. (2007). Infrared Spectroscopy—Enabling an Evidence-Based Diagnostic Surveillance Approach to Agricultural and Environmental Management in Developing Countries. Journal of Near Infrared Spectroscopy, 15(1), 1-19, 15(1), 1–19. https://opg.optica.org/abstract.cfm?uri=jnirs-15-1-1

Zbair, M., El Hadrami, A., Bellarbi, A., Monkade, M., Zradba, A., & Brahmi, R. (2020). Herbicide Diuron removal from aqueous solution by bottom ash: Kinetics, isotherm, and thermodynamic adsorption studies. Journal of Environmental Chemical Engineering, 8(2), 103667. https://doi.org/10.1016/J.JECE.2020.103667

Downloads

Publicado

06/11/2023

Como Citar

CARVALHO, N. B. O.; LYRA, L. F.; SAKANE, K. K. Aplicação da espectroscopia vibracional no infravermelho, acoplada a análises estatísticas multivariadas, para a análise dos efeitos do uso de herbicidas à base do Diuron em feijões de tipo de grão carioca. Research, Society and Development, [S. l.], v. 12, n. 11, p. e136121143753, 2023. DOI: 10.33448/rsd-v12i11.43753. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43753. Acesso em: 2 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas