Biotechnology: Applications of Tissue Engineering in the regeneration of human organs and tissues - Review
DOI:
https://doi.org/10.33448/rsd-v12i13.44279Keywords:
Tissue engineering; Tissue regeneration; Bioartificial organs; Bioengineering.Abstract
Tissue engineering is a promising field in biotechnology that involves the combination of cells, biomaterials, and growth factors to create structures capable of replacing or regenerating damaged tissues. The growing demand for solutions due to organ scarcity and injuries has driven multidisciplinary approaches in the development of biomaterials for this purpose. Therefore, the objective of this study is to conduct a literature review by analyzing articles on the evolution of tissue engineering, its techniques, and how it is applied in current medicine. The conclusion drawn is that, despite multiple challenges in tissue engineering modernization, such as creating functional blood vessels and ethical issues, with investments in research and the use of appropriate regulations, bioengineering has revolutionized regenerative medicine through techniques like 3D printing, the use of scaffolds, and bioimpressions. This has led to a reduction in transplant waiting lists and improved prospects for patients seeking medical care.
References
Anderson, J. M., Rodriguez, A., & Chang, D. T. (2006). Foreign body reaction to biomaterials. In: Seminars in immunology. Academic Press, 86-100. https://doi.org/10.1016/j.smim.2007.11.004.
Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., & Retik, A. B. (2006). Tissue-engineered autologous bladders for patients needing cystoplasty. The lancet, 367(9518), 1241-1246.
Atala, A. (2012). Regenerative medicine strategies. Journal of pediatric surgery, 47(1), 17-28.
Atala, A. & Yoo, J. J. (2015). Essentials of 3D biofabrication and translation. Elsevier. 153-164.
Atala, A., et al. (Ed.). (2018). Principles of regenerative medicine. Elsevier. 391-412.
Badylak, S. F., Taylor, D. & Uygun, K. (2011). Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annual review of biomedical engineering, 13, 27-53. 10.1002/jbm.a.35291.
Boland, T., et al. (2006). Application of inkjet printing to tissue engineering. Biotechnology Journal: Healthcare Nutrition Technology, 1(9), 910-917. 10.1002/biot.200600081.
Bose, S., Vahabzadeh, S., & Bandyopadhyay, A. (2013). Bone tissue engineering using 3D printing. Materials today, 16(12), 496-504.
Branco, A. C. M. (2014). Engenharia dos tecidos e órgãos: sucessos e desafios. Tese de Doutorado. Mestrado Integrado em Ciências Farmacêuticas, EM - IUEM - Ciências Farmacêuticas.
Chaignaud, B. E., Langer, R. & Vacanti, J. P. (1997). The history of tissue engineering using synthetic biodegradable polymer scaffolds and cells. Synthetic biodegradable polymer scaffolds, p. 1-14.
Chen, P., et al. (2005). Formation of lung alveolar-like structures in collagen–glycosaminoglycan scaffolds in vitro. Tissue engineering, 2005, 11(9-10), 1436-1448.
Clark, D. P. & Pazdernik, N. J. (2015). Biotechnology. Elsevier. 2, 747-775.
Cohen, S., et al. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clinical materials, 1993, 13(1-4), 3-10. 10.1016/0267-6605(93)90082-i.
Cordeiro, A. M.; Oliveira, G. M.; Rentería, J. M. & Guimarães, C. A. (2007). Revisão sistemática: uma revisão narrativa. Revista Do Colégio Brasileiro De Cirurgiões, 34(6), 428–431. https://doi.org/10.1590/S0100-69912007000600012.
Francisco, L. A. V., & Trevelin, L. C. (2015). Definição de projetos para bioimpressão em STL utilizando orientação a objetos e VTK. Programa de pós-graduação em ciência da computação, SIBIGRAP, UFSCAR.
Fransen, M. F. J. et al. (2021). Bioprinting of kidney in vitro models: cells, biomaterials, and manufacturing techniques. Essays in Biochemistry, 65(3), 587-602.
Frantz, C., Stewart, K. M. & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of cell science, 123(24), 4195-4200.
Freitas, G. R. & Destefani, A. C. (2022). Bioengenharia tecidual em doenças renais: uma ponte entre o transplante e a medicina regenerativa. AYA Editora. 1, 14-35. 10.47573/aya.5379.1.73.
Gao, Q., et al. (2019). 3D printing of complex GelMA-based scaffolds with nanoclay. Biofabrication, 11(3), 035006.
Goldschmidt, A. I. Breunig, E. T. & Amaral, A. (2021). James Watson e Francis Crick: investigando concepções prévias com alunos concluintes do ensino médio a respeito desses cientistas. Amazónia. Revista de educação em ciências e matemáticas, 17(39), 129-139.
Groll, J., et al. (2018). A definition of bioinks and their distinction from biomaterial inks. Biofabrication, 11(1), 013001.
Hynes, R. O. (2009). The extracellular matrix: not just pretty fibrils. Science, 326(5957), 1216-1219.
Jia, W., et al. (2016). Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 106, 58-68.
Jovic, T. H. et al. (2020). 3D Bioprinting and the Future of Surgery. Frontiers in surgery, 7, 609836.
Kang, H. W, et al. (2016). A 3D Bioprinting System to Produce Human-Scale Tissue Constructs With Structural Integrity. Nature biotechnology, 34(3), 312-319.
Kim, H. D, et al. (2017). Biomimetic materials and fabrication approaches for bone tissue engineering. Advanced healthcare materials, 6(23), 1700612.
Kolesky, D. B, et al. (2016). Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the national academy of sciences, 113(12), 3179-3184.
Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Accounts of Chemical Research, 33(2), 94-101.
Langer, R. & Vacanti, J. (2016). Advances in tissue engineering. Journal of pediatric surgery, 51(1), 8-12.
Laschke, M. W. & Menger, M. D. (2012). Vascularization in tissue engineering: angiogenesis versus inosculation. European Surgical Research, 48(2), 85-92.
Ma, P. X (2008). Biomimetic materials for tissue engineering. Advanced drug delivery reviews, 60(2), 184-198.
Maeda, S., et al. (2004). Endogenous TGF‐β signaling suppresses maturation of osteoblastic mesenchymal cells. The EMBO journal, 23(3), 552-563.
Mattos, P. C. (2015). Tipos de revisão de literatura. Unesp, 1-9. Recuperado de https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.pdf.
Moro, F. H. (2018). Modificação do bico de impressora 3D para obtenção de scaffolds para uso em medicina regenerativa. Tese de Doutorado. Universidade de São Paulo.
Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature biotechnology, 32(8), 773-785.
Nascimento, M. H. M. & Lombello, C. B. (2016). Hidrogéis a base de ácido hialurônico e quitosana para engenharia de tecido cartilaginoso. Polímeros, 26, 360-370.
Ornitz, D. M. & Itoh, N. (2015). The fibroblast growth factor signaling pathway. Wiley Interdisciplinary Reviews: Developmental Biology, 4(3), 215-266.
Ozbolat, I. T. & Yu, Y. (2013). Bioprinting toward organ fabrication: challenges and future trends. IEEE Transactions on Biomedical Engineering, 60(3), 691-699.
Ozbolat, I. T. & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76, 321-343.
Paim, A. (2017). Desenvolvimento de biomateriais eletrofiados, biorreatores e modelos fenomenológicos para a engenharia de tecidos.
Peduti, G. P, et al. (2020). Bioimpressão 3D de tecidos e órgãos: uma prospecção tecnológica. Cadernos de Prospecção, 13(5), 1383-1383.
Pinto, F. R. V. (2013). Citocompatibilidade de matrizes de quitosano/fosfato de cálcio. Dissertação de mestrado.
Pittenger, M. F. et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143-147.
Reis, C., et al. (2009). Biotecnologia para saúde humana: tecnologias, aplicações e inserção na indústria farmacêutica. BNDES Setorial, 359-392.
Reis, C., Pieroni, J. P. & Souza, J. O. B. (2010). Biotecnologia para saúde no Brasil. BNDES Setorial, (32), 193-229.
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta paul. enferm. 20 (2). https://doi.org/10.1590/S0103-21002007000200001.
Thomson, JA, et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145-1147.
Trevizan, L. N. F., Borges, M. A. C. & Barud, H. S. (2022). Prospecção tecnológica: polímeros aplicados ao desenvolvimento de biotintas para bioimpressão 3D. Brazilian Journal of Development, 8(5), 42163-42181.
Wang, P., et al. (2021). 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Bio-design and manufacturing, 4(2), 344-378.
Yannas, I. V., & Burke, J. F. (1980). Design of an artificial skin. I. Basic design principles. Journal of biomedical materials research, 14(1), 65-81.
Yi, S., Xu, L. & Gu, X. (2019). Scaffolds for peripheral nerve repair and reconstruction. Experimental neurology, 319, 112761.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Isabelli Laiane Borges; Wagner Rafael da Silva; Milena Carla Queiroz da Silva; Poliana dos Santos Barros; Fábio dos Santos Souza; Luan Souza do Nascimento
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.