Explorando o potencial antifúngico: A composição de flavonóides do extrato de Machaerium villosum contra Cryptococcus neoformans

Autores

DOI:

https://doi.org/10.33448/rsd-v13i1.44604

Palavras-chave:

Jacarandá; Antifúngico; Flavonol.

Resumo

A crescente prevalência de infecções fúngicas, juntamente com as limitações e efeitos adversos associados aos medicamentos antifúngicos existentes, torna necessária a exploração de abordagens terapêuticas alternativas. O objetivo deste estudo foi, portanto, realizar uma análise química e avaliar o potencial biológico do extrato hidroetanólico obtido das folhas de Macherium villosum. Assim, este estudo investiga o extrato dessa planta, que pertence à família Fabaceae, conhecida por seu rico conteúdo de flavonoides. Utilizando UHPLC-ESI-IT-MS/MS, o extrato foi caracterizado, revelando a presença de vários flavonoides, incluindo derivados glicosilados de kaempferol e quercetina, juntamente com ácidos orgânicos e derivados de ácidos graxos. O teor total de flavonoides foi quantificado em 45,7 mg/g. Avaliações antifúngicas subsequentes revelaram atividade significativa contra Cryptococcus neoformans, com uma concentração inibitória mínima (CIM) de 16 μg/ml e ação fungicida a 256 μg/ml. A eficácia observada contra C. neoformans está alinhada com as propriedades antifúngicas documentadas dos flavonoides, que perturbam a integridade da membrana e impedem processos celulares cruciais. Os achados sugerem que o extrato de M. villosum, especialmente seus constituintes flavonoides, apresenta potencial como fonte para o desenvolvimento de novas terapias antifúngicas.

Referências

Aboody, M. S. A. & Mickymaray, S. (2020). Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics (Basel), 9(2). https://doi.org/10.3390/antibiotics9020045

Almeida, C. de. & Viani, R. A. G. (2020). Espécies arbóreas plantadas na restauração da Mata Atlântica (versão 2). Laboratório de Silvicultura e Pesquisas Florestais, LASPEFUFSCar.

Andersen, O. M. & Markham, K. R. (2006). Flavonoids: chemistry, biochemistry, and applications. Taylor & Francis Group.

Beelders, T. (2011). HPLC method development for the characterisation of the flavonoid and phenolic acid composition of rooibos (Aspalathus linearis) infusions. [Dissertação de Mestrado, Universidade de Stellenbosch]. https://core.ac.uk/download/pdf/37344789.pdf

Bento, C. C., Ferreira, M. J. P., Proença, G. T. de., Tahira, L. S., Sartori, A. L. B. & Sannomiya, M. (2022). Análises por cromatografia líquida de alta eficiência acoplada a detector de ultravioleta de arranjo de diodos (CLAE-UV-DAD) de extratos de Machaerium acutifolium Vogel e o seu potencial antioxidante. In Agendas Locais e Globais da Sustentabilidade: Ciência, Tecnologia, Gestão e Sociedade. Blucher. https://doi.org/10.5151/9786555501551

Bermas, A. & Geddes-Mcalister, J. (2022). Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Molecular Microbiology, 114(5), 721– 734. https://doi.org/10.1111/mmi.14565

Bongomin, F.; Gago, S., Oladele, R. O. & Denning, D. W. (2017). Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. Journal of fungi, 3(4), 57. https://doi.org/10.3390/jof3040057

Brown, G. D., Denning, D. W.; Gow, N. A., Levitz, S. M.; Netea, M. G. & White, T. C. (2012). Hidden killers: human fungal infections. Science translational medicine, 4(165), 165rv13. https://doi.org/10.1126/scitranslmed.3004404

Buzgaia, N., Lee, S. Y., Rukayadi, Y., Abas, F., Shaari, K. (2021). Antioxidant Activity, α-Glucosidase Inhibition and UHPLC–ESI–MS/MS Profile of Shmar (Arbutus pavarii Pamp). Plants, 10(1659). https://doi.org/10.3390/plants10081659

Cádiz-Gurrea, M. D., Fernández-Arroyo, S., Joven, J. & Segura‐Carretero, A. (2013). Comprehensive characterization by UHPLC-ESI-Q-TOF-MS from an Eryngium bourgatii extract and their antioxidant and anti-inflammatory activities. Food Research International, 50, 197-204. https://doi.org/10.1016/j.foodres.2012.09.038

Carvalho, A. A.; Santos, L., Sousa, R. P. de., Freitas, J. S. de., Araújo, B. Q. & Chaves, M. H. (2019). Identificação de flavonoides das folhas de Machaerium acutifolium (Papilionoideae-fabaceae) por espectrometria de massas. In Ciências Biológicas Campo Promissor em Pesquisa. Atena. https://doi.org/10.22533/at.ed.82619131113

Chen, G., Li, X., Saleri, F. & Guo, M. (2016). Analysis of Flavonoids in Rhamnus davurica and Its Antiproliferative Activities. Molecules, 21(10), 1275. https://doi.org/10.3390/molecules21101275

Chintalapudi, K. & Badu-Tawiah, A. K. (2020). An integrated electrocatalytic nESI-MS platform for quantification of fatty acid isomers directly from untreated biofluids. Chemical science, 11(36), 9891–9897. https://doi.org/10.1039/d0sc03403g

CLSI. (2017). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. (2017). (3a ed.), CLSI standard M27. Wayne, PA: Clinical and Laboratory Standards Institute.

CLSI. (2017). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 4th ed. CLSI standard M27. Wayne, PA: Clinical and Laboratory Standards Institute.

Gouveia, S. & Castilho, P. C. (2011). Characterisation of phenolic acid derivatives and flavonoids from different morphological parts of Helichrysum obconicum by a RP-HPLC-DAD-(-)-ESI-MSn method. Food chemistry, 129(2), 333–344. https://doi.org/10.1016/j.foodchem.2011.04.078

Derengowski, L. da S. (2011). Caracterização da resposta de fungos patogênicos a diferentes condições de interação intra e interreinos. [Tese de Doutorado, Universidade de Brasília]. Repositório Institucional as UnB. https://repositorio.unb.br/handle/10482/9529?locale=pt_BR

Ding, S., Dudley, E., Plummer, S., Tang, J., Newton, R. P. & Brenton, A. G. (2008). Fingerprint profile of Ginkgo biloba nutritional supplements by LC/ESI-MS/MS. Phytochemistry, 69(7), 1555–1564. https://doi.org/10.1016/j.phytochem.2008.01.026

Djouossi, M. G., Tamokou, J. de D., Ngnokam, D., Kuiate, J. R., Tapondjou, L. A., Harakat, D. & Voutquenne-Nazabadioko, L. (2015). Antimicrobial and antioxidant flavonoids from the leaves of Oncoba spinosa Forssk. (Salicaceae). BMC Complement Altern Med, 15(134). https://doi.org/10.1186/s12906-015-0660-1

Fathoni, A., Saepudin, E., Cahyana, A. H., Rahayu, D. U. C. & Haib, J. (2017). Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado. AIP Conference Proceedings, 10(1). https://doi.org/10.1063/1.4991183

Food and Drug Administration, HHS (2014). Establishing a list of qualifying pathogens under the Food and Drug Administration Safety and Innovation Act. Final rule. Federal register, 79(108), 32464–32481.

Fraternale, D., Ricci, D., Verardo, G., Gorassini, A., Stocchia, V. & Sestili, P. (2015). Activity of Vitis vinifera Tendrils Extract Against Phytopathogenic Fungi. Natural product communications, 10(6), 1037–1042. https://doi.org/10.1177/1934578X1501000661

Garcia, M. B., Venturin, C., Rodas, C. L., Carlos, L., Higashikawa, E. M. & Farias, E. de S. (2010). Avaliação do crescimento de mudas de Machaerium villosum Vogel cultivadas em solução nutritiva. XIX Congresso de Pós-graduação da UFLA, Minas Gerais. http://www.sbpcnet.org.br/livro/lavras/resumos/1967.pdf

Gilbert, B.; Souza, J. P. de., Fascio, M., Kitagawa, M., Nascimento, S. S. C., Fortes, C. C., Seabra, A. do Prado; Pellegrino, J. (1970). Schistosomiasis: Protection against infection by terpenoids. Anais da Academia Brasileira de Ciências, 42, 397-400.

Giudice-Neto, J., Ramos, R. F.; Moraes, E. M. de., Silva, M. J. da. & Solferini, V. N. (2014). Isolation and characterization of ten new microsatellite markers in Machaerium villosum Vogel (Fabaceae), Hoehnea, 41(1), 77-80. https://doi.org/10.1590/S2236-89062014000100007

Grati, W., Samet, S., Bouzayani, B., Ayachi, A., Treilhou, M., Téné, N. & Mezghani-Jarraya, R. (2022). HESI-MS/MS Analysis of Phenolic Compounds from Calendula aegyptiaca Fruits Extracts and Evaluation of Their Antioxidant Activities. Molecules, 27 (2314). https://doi.org/10.3390/molecules27072314

Higa, C. K., Pauletti, M. P., Gamboa, I. C., Silva, D. H. D., Torres, L. B., Furlan, M.; Young, M. C. M.; P. Lopes, N. P. & Bolzani, V. da S. (2006). Novo derivado fenólico de Machaerium villosum (Leguminosae – Papilionoideae). In: Livro de Resumos, 29a. Reunião Anual da Sociedade Brasileira de Química. http://sec.sbq.org.br/cdrom/29ra/resumos/T1189-1.pdf

Ivanov, M., Kannan, A., Stojković, D. S., Glamočlija, J., Calhelha, R. C., Ferreira, I. C. F. R., Sanglard, D. & Soković, M. (2020). Flavones, Flavonols, and Glycosylated Derivatives-Impact on Candida albicans Growth and Virulence, Expression of CDR1 and ERG11, Cytotoxicity. Pharmaceuticals (Basel), 14(1), 27. https://doi.org/10.3390/ph14010027

Kumar, S., Singh, A. & Kumar, B. (2017). Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. Journal of pharmaceutical analysis, 7 (4), 214–222. https://doi.org/10.1016/j.jpha.2017.01.005

Li, Z. H., Guo, H., Xu, W. B., Ge, J., Li, X., Alimu, M. & He, D. J. (2016). Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC–ESI–QTOF–MS-MS. Journal of Chromatographic Science, 54(5), 805–810. https://doi.org/10.1093/chromsci/bmw016

Lima, N. M., Santos, V. N. C. & Laporta, F. A. (2018). Chemodiversity, bioactivity, and chemosystematics of the genus Inga (FABACEAE): A Brief Review. Revista Virtual de Química, 10(3), 459-473. https://doi.org/10.21577/1984-6835.20180035

Limper, A. H., Adenis, A., Le, T. & Harrison, T. S. (2017). Fungal infections in HIV/AIDS. The Lancet. Infectious diseases, 17(11), e334–e343. https://doi.org/10.1016/S1473-3099(17)30303-1

Liu, Y. & Seeram, N. P. (2018). Liquid chromatography coupled with time-of-flight tandem mass spectrometry for comprehensive phenolic characterization of pomegranate fruit and flower extracts used as ingredients in botanical dietary supplements. Journal of separation science, 41(15), 3022–3033. https://doi.org/10.1002/jssc.201800480

Lopes, J. A., Rodrigues, V. P., Tangerina, M. M. P., Rocha, L. R. M. D., Nishijima, C. M., Nunes, V. V. A.; Almeida, L. F. R.; Vilegas, W., Santos, A. R. S. D., Sannomiya, M., & Hiruma-Lima, C. A. (2020). Machaerium hirtum (Vell.) Stellfeld Alleviates Acute Pain and Inflammation: Potential Mechanisms of Action. Biomolecules, 10 (4), 590. https://doi.org/10.3390/biom10040590

Machado, O. V. O., Patrocínio, M. C. A., Medeiros, M. S., Bandeira, T. de J. P. G. (2019). Antimicrobianos: revisão geral para graduandos e generalistas. EdUnichristus.

Melo, V. V., Duarte, I. de P., Soares, A. Q. (2012). Guia de antimicrobianos. Universidade Federal de Goiás - Hospital das Clínicas.

Oliveira, V. M., Carraro, E., Auler, M. E. & Nour, K. (2016). Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Brazilian journal of biology, 76 (4), 1029-1034. http://dx.doi.org/10.1590/1519-6984.07415

Parejo, I., Jauregui, O., Sánchez-Rabaneda, F., Viladomat, F., Bastida, J. & Codina, C. (2004) . Separation and Characterization of Phenolic Compounds in Fennel (Foeniculum vulgare) Using Liquid Chromatography−Negative Electrospray Ionization Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry (52) 12, 3679-3687. http://dx.doi.org/ 10.1021/jf030813h

Prista. L. N. (1995). Tecnologia framauceutica II. (5a ed.). Fundação Calouste Gulbenkian.

Qiu, Y., He, D., Yang, J., Lukai, M., Kaiqi, Z. & Yong, C. (2020). Kaempferol separated from Camellia oleifera meal by high-speed countercurrent chromatography for antibacterial application. Eur Food Res Technol, 246, 2383–2397, 2020. https://doi.org/10.1007/s00217-020-03582-0

Rajasingham, R., Smith, R. M., Park, B. J., Jarvis, J. N., Govender, N. P., Chiller, T. M., Denning, D. W., Loyse, A. & Boulware, D. R. (2017). Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. The Lancet. Infectious diseases, 17(8), 873–881. https://doi.org/10.1016/S1473-3099(17)30243-8

Roriz, C. L., Barros, L., Carvalho, A. M., Santos-Buelga, C. & Ferreira, I. C.F.R. (2014). Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Research International, 62, 684-693. https://doi.org/10.1016/j.foodres.2014.04.036

Sannomiya, M. Ruy, J. V. J., Tahira, L. S., Bento, C. C., Tangerina, M. M. P., Sartori, A. L. B., Bauab, T. M.; Hiruma-Lima, C. A., Vilegas, W. (2020). Química e avaliação das atividades antiinflamatória, antiúlcera e antimicrobiana: Machaerium eriocarpum Benth. Produção e Controle de Produtos Naturais 2, Editora Atena.

Santana, D. B., Costa, R. C. da, Araújo, R. M., Paula, J. E. de, Silveira, E. R., Braz-Filho, R. & Espindola, L. S. (2015). Activity of Fabaceae species extracts against fungi and Leishmania: vatacarpan as a novel potent anti-Candida agente. Revista Brasileira de Farmacognosia, 25(4), 401-406. https://doi.org/10.1016/j.bjp.2015.07.012

Santos, A. B. dos., Silva, D. H. S., Bolzani, V. da S., Santos, L. Á., Schidt, T. M. & Baffa, O. (2009). Antioxidant properties of plant extracts: an EPR and DFT comparative study of the reaction with DPPH, TEMPOL and spin trap DMPO. Journal of the Brazilian Chemical Society, 20(8), 1483-1492, 2009. https://doi.org/10.1590/S0103-50532009000800015

Santos Jr., I. D. dos., Souza, I. A. M., Borges, R. G., Souza, L. B. S. de; Santana, W. J. de. & Coutinho, H. D. M. (2005). Característica gerais da ação, do tratamento e da resistência fúngica ao fluconazol / General traits of action, treatment and fungal resistance to fluconazol, Scientia Medica, 15(3), 189-197. Recuperado de https://revistaseletronicas.pucrs.br/ojs/index.php/scientiamedica/article/view/1566

Santos, P. M. L., Schripsema, J., Kuster, R. M. (2005). Flavonóides O-glicosilados de Croton campestris St. Hill. (Euphorbiaceae). Revista Brasileira de Farmacognosia, 15(4), 321-325. https://doi.org/10.1590/S0102-695X2005000400011

Silva, M. J. D., Simonet, A. M., Silva, N. C., Dias, A. L. T.; Vilegas, W. & Macías, F. A. (2019). Bioassay-Guided Isolation of Fungistatic Compounds from Mimosa caesalpiniifolia Leaves. Journal of natural products, 82(6), 1496–1502. https://doi.org/10.1021/acs.jnatprod.8b01025

Simirgiotis, M. J., Benites, J., Areche, C. & Sepúlveda, B. (2015). Antioxidant capacities and analysis of phenolic compounds in three endemic Nolana species by HPLC-PDA-ESI-MS. Molecules, 20(6), 11490-11507. https://doi.org/10.3390/molecules200611490

Tahira, L. S. (2022). Estudo químico e fitotóxico do extrato hidroetanólico das folhas de Machaerium amplum Benth. [Dissertação de Mestrado em Ciências, Escola de Artes, Ciências e Humanidades - Universidade de São Paulo]. Bibliotoca Digital de Teses e Dissertações da USP. https://www.teses.usp.br/teses/disponiveis/100/100136/tde-28012022-093234/publico/LucianaSayuriTahira_versaocorrigida.pdf

Tahira, L. S., Tino, R. A., Bento, C. C., Tangerina, M. M. P., de Almeida, L. F. R., Franco, D. M., sartori, A. L. B. & Sannomiya, M. (2021). The lupeol content in Machaerium species by HPLC-APCI-MS/MS and the allelopathic action. Journal of Horticulture and Forestry, 13(2), 44-50. https://doi.org/10.5897/JHF2021.0668

Tahira, L. S., Torres, P., Ferreira, M. J. P., Tangerina, M. M. P., Santos-Lima, D., Kamikawachi, R. C., Vilegas, W., Sartori, A. L. B. & Sannomiya, M. (2022). Phytotoxic action of Machaerium amplum Benth. leaves extract. International Journal of Agriculture and Envrinmental Research, 8(1), 46-62. https://doi.org/10.22004/ag.econ.333818

Tannus, M. M. (2017). Poluição ambiental causada por fármacos para usos humanos e veterinários. Revista Acadêmica Oswaldo Cruz, 15. http://revista.oswaldocruz.br/Edicao_15/Artigos

Tatsimo, S. J. N., Tamokou, J. D. D., Havyarimana, L., Dezső, C., Peter, F., Judit, H., Jules-Roger, K. & Pierre, T. (2012). Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res Notes, 5(158). https://doi.org/10.1186/1756-0500-5-158

Tavares, W. (2014). Antibióticos e quimioterápicos para o clínico (3a ed.) Atheneu.

Taylor, V. F., March, R. E., Longerich, H. P. & Stadey, C. J. (2005). A mass spectrometric study of glucose, sucrose, and fructose using an inductively coupled plasma and electrospray ionization. International Journal of Mass Spectrometry, 243(1), 71-84. https://doi.org/10.1016/j.ijms.2005.01.001.

Vihakas, M. (2014). Flavonoids and other phenolic compounds: characterization and interactions with lepidopteran and sawfly larvae. [Tese de Doutorado, University of Turku]. Department of Chemistry/Faculty of Mathematics and Natural Sciences.

Yhiya, M. A., Amani M. M., Mona G. Z. & Mohamed S. A. (2015). The genus Machaerium (Fabaceae): taxonomy, phytochemistry, traditional uses and biological activities, Natural Product Research: Formerly Natural Product Letters, 29(15), 1388-1405. http://dx.doi.org/10.1080/14786419.2014.1003062

Zhang, Y., Xiong, H., Xu, X., Xue, X., Liu, M., Xu, S., Liu, H., Gao, Y., Zhang, H. & Li, X. (2018). Compounds Identification in Semen Cuscutae by Ultra-High-Performance Liquid Chromatography (UPLCs) Coupled to Electrospray Ionization Mass Spectrometry. Molecules, 23(5), 1199. https://doi.org/10.3390/molecules23051199

Downloads

Publicado

03/01/2024

Como Citar

DOURADO, C. P.; KAMIKAWACHI, R. C.; FERREIRA, M. J. P. .; SARTORI, Ângela L. B.; RODRIGUES, C. M.; SPADARI, C. de C.; ISHIDA, K.; SANNOMIYA, M. . Explorando o potencial antifúngico: A composição de flavonóides do extrato de Machaerium villosum contra Cryptococcus neoformans. Research, Society and Development, [S. l.], v. 13, n. 1, p. e1613144604, 2024. DOI: 10.33448/rsd-v13i1.44604. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/44604. Acesso em: 20 jun. 2024.

Edição

Seção

Ciências Exatas e da Terra