Aplicação de curativos de celulose bacteriana na cicatrização de feridas crônicas e complexas: Tendências e perspectivas
DOI:
https://doi.org/10.33448/rsd-v13i2.44920Palavras-chave:
Celulose bacteriana; Cicatrização cutânea; Curativos; Úlceras crônicas e complexas; Engenharia de tecidos.Resumo
Este estudo teve como objetivo realizar uma revisão narrativa da literatura dos mais recentes estudos e avanços tecnológicos relacionados às aplicações biomédicas de curativos compostos por biopolímero de celulose bacteriana (CB) na cicatrização de feridas crônicas e complexas. A CB pode ser produzida em larga escala através de processo de fermentação por bactérias específicas. As fibrilas de celulose formam uma rede altamente porosa, semelhante à estrutura da matriz extracelular de tecidos, além de possuírem características físico-químicas favoráveis para aplicações como curativos. Recentes estudos têm demonstrado a importância e o interesse na incorporação de ativos farmacêuticos tanto de origem sintética quanto natural, com objetivo de conferir propriedades farmacológicas específicas à estrutura destas matrizes poliméricas. A versatilidade físico-química da CB permite que este material seja funcionalizado e modificado através de diversas técnicas, ex situ e in situ, para obter novos materiais híbridos e com propriedades funcionais para diferentes aplicações biomédicas. Dentre os ativos farmacêuticos incorporados em matriz de CB para aplicação em feridas crônicas e complexas, destacam-se os ativos antissépticos e antimicrobianos; os antiinflamatórios de fontes naturais, bem como os fatores de crescimento. Outra estratégia que tem se demonstrado promissora é a aplicação de células-tronco mesenquimais e componentes de seu secretoma na matriz polimérica da CB. Sendo assim, esta revisão traz luz aos últimos avanços tecnológicos referentes às diferentes formas de funcionalização de curativos baseados em CB voltados ao tratamento de feridas crônicas e complexas.
Referências
Abazari, M. F., et al. (2021). Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review. Applied Sciences, 11(17), 7769.
Abbade, L. P, F., et al. (2020). Consensus on the diagnosis and management of chronic leg ulcers - Brazilian Society of Dermatology. An Bras Dermatol, 95 (Supp. 1), 1-18.
Aditya, T., et al. (2022). Surface Modification of Bacterial Cellulose for Biomedical Applications. International Journal of Molecular Sciences, 23(2), 610.
Akers, K. S., et al. (2014). Infectious Disease Clinical Research Program Trauma Infectious Disease Outcomes Study Group. Biofilm sandpersistentwoundinfections in United States military trauma patients: a case-controlanalysis. BMC Infect Dis, 14, 190.
Andriani, D., Apriyana, A. Y. & Karina, M. (2020). The optimizationofbacterialcelluloseproductionand its applications: a review. Cellulose, 1-20.
Atkin L. (2019). Chronicwounds: thechallengesofappropriate management. Br J Community Nurs, 24(Supp. 9), S26-S32.
Augustine, R., et al. (2021). Growth factorloaded in situ photocrosslinkablepoly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatinmethacryloylhybrid patch for diabeticwoundhealing. MaterSciEng C MaterBiolAppl., 118, 111519.
Azevedo, M. M., et al. (2020). Hard-to-healwounds, biofilmandwoundhealing: anintricateinterrelationship. Br J Nurs.,29(5), S6-S13.
Baquerizo Nole K. L., et al. (2014). Woundresearchfundingfromalternativesourcesof federal funds in 2012. WoundRepairRegen., 22(3), 295-300.
Bian, D., et al. (2022). The applicationofmesenchymalstromalcells (MSCs) andtheirderivativeexosome in skinwoundhealing: a comprehensive review. StemCell Res Ther.,13(1), 24.
Bodin, A., et al. (2010). Tissue-engineeredconduitusing urine-derivedstemcellsseededbacterialcellulosepolymer in urinaryreconstructionanddiversion. Biomaterials, 31(34), 8889-901.
Cano Sanchez, M., et al. (2018). TargetingOxidative Stress and Mitochondrial Dysfunction in the Treatment of Impaired Wound Healing: A Systematic Review. Antioxidants (Basel), 7(8), 98.
Cherng, J. H., et al. (2021). BacterialCellulose as a PotentialBio-Scaffold for EffectiveRe-EpithelializationTherapy. Pharmaceutics, 13(10), 1592.
Chinta, M. L., et al. (2021). Assessment ofproperties, applicationsandlimitationsofscaffoldsbasedoncelluloseand its derivatives for cartilagetissueengineering: A review. Int J BiolMacromol, 175, 495-515.
Choi, S. M., et al. (2022). BacterialCelluloseand Its Applications. Polymers (Basel), 14(6), 1080.
Choudhary, M., et al. (2021). Scarfreehealingof full thicknessdiabeticwounds: A uniquecombinationofsilvernanoparticles as antimicrobialagent, calciumalginatenanoparticles as hemostaticagent, freshblood as nutrient/growthfactorsupplierandchitosanas basematrix. Int J BiolMacromol, 178, 41-52.
Ciecholewska-Juśko, D., et al.(2021). Superabsorbentcrosslinkedbacterialcellulosebiomaterials for chronicwounddressings. CarbohydrPolym., 253, 117247
Coltro, P. S.,et al. (2011). Atuação da cirurgia plástica no tratamento de feridas complexas. Revista do Colégio Brasileiro de Cirurgiões, 38 381-386.
Costa, A. M., et al. (2015). Custos do tratamento de úlceras por pressão em unidade de cuidados prolongados em uma instituição hospitalar de Minas Gerais. Enfermagem Revista, 18(1), 58-74.
Cronin, P., Ryan, F., & Coughlan, M. (2008). Undertaking a literature review: a step-by-step approach. British journal of nursing, 17(1), 38-43.
Das, M., et al. (2022). Compositescaffoldsbasedonbacterialcellulose for wounddressingapplication.ACS Applied BioMaterials, 5(8), 3722-3733.
De almeida, C. M. & Motta, J. B. (2018). Tratamento das Úlceras Crônicas de Membros Inferiores: Estado da Arte e Perspectivas Futuras.Hegemonia, 25, 122-122.
De Amorim, J. D. P.,et al. (2022). BacterialCellulose as a Versatile Biomaterial for WoundDressingApplication. Molecules, 27,17, 5580.
De Lucena, M. T., et al.(2015). Biocompatibilityandcutaneousreactivityofcellulosicpolysaccharidefilm in inducedskinwounds in rats.JournalofMaterials Science: Materials in Medicine, 26, 1-6.
DeMattos, I. B., et al. (2019). Uptakeof PHMB in a bacterialnanocellulose-basedwounddressing: A feasibleclinical procedure.Burns, 45, 4, 898-904.
Djaprie, S. &Wardhana, A. (2013). Dressing for PartialThickness Burn Using Microbial CelluloseandTransparentFilmDressing: A ComparativeStudy. JurnalPlastikRekonstruksi, 2(2), 89-95.
Emre Oz, Y. (2021). A review offunctionalisedbacterialcellulose for targetedbiomedicalfields. JournalofBiomaterialsApplications, 36(4), 648-681.
Fatima, A., et al. (2022). Ex situ developmentandcharacterizationofgreenantibacterialbacterialcellulose-basedcomposites for potentialbiomedicalapplications. AdvancedCompositesandHybridMaterials, 5, 307–321.
Frazier, T., et al. (2020). Clinical translationalpotential in skinwoundregeneration for adipose-derived, blood-derived, andcellulosematerials: cells, exosomes, andhydrogels. Biomolecules, 10(10), 1373.
Gao, H. L., et al. (2019). ComparisonofBacterialNanocelluloseProducedbyDifferentStrainsunderStaticandAgitated Culture Conditions. Carbohydratepolymers, 227, 115323.
Gao, H. L., et al. (2020). Bioinspiredhierarchicalhelicalnanocompositemacrofibersbasedonbacterialcellulosenanofibers. National Science Review, 7(1), 73-83.
Garcia-Orue, I., et al. (2017). Nanotechnology-based delivery systems to release growthfactorsandotherendogenousmolecules for chronicwoundhealing. JournalofDrug Delivery Science and Technology, 42, 2-17.
Golchin, A. &Nourani, M. R. (2020). Effectsofbilayernanofibrillarscaffoldscontainingepidermalgrowthfactoron full‐thicknesswoundhealing. Polymers for Advanced Technologies,31(11), 2443-2452.
Gorgieva, S. (2020). Bacterialcellulose as a versatileplatform for researchanddevelopmentofbiomedicalmaterials. Processes, 8(5), 624.
Graves, N., et al. (2022). A narrative review oftheepidemiologyandeconomicsofchronicwounds.British JournalofDermatology, 187(2), 141–148.
Gregory, D. A., et al. (2021). Bacterialcellulose: A smart biomaterial withdiverseapplications. Materials Science andEngineering: Reports, 145, 100623.
Gupta, A., et al. (2020). Synthesisof Silver NanoparticlesUsingCurcumin-CyclodextrinsLoaded Into Bacterial Cellulose-Based Hydrogels for WoundDressingApplications. Biomacromolecules, 21, 1802-1811.
He, W., et al. (2023). Fabricationof Cu2+-loadedphase-transitedlysozymenanofilmonbacterialcellulose: Antibacterial, anti-inflammatory, and pro-angiogenesis for bacteria-infectedwoundhealing. CarbohydratePolymers, 309, 120681.
Hettich, B. F., et al. (2020). Exosomes for wound healing: purification optimization and identification of bioactive components. Advanced Science, 7(23), 2002596.
Hoff, J., et al. (2021). Controlled Release ofthe α-Tocopherol-DerivedMetabolite α-130-Carboxychromanol fromBacterialNanocelluloseWound Cover Improves WoundHealing. Nanomaterials, 11, 1939.
Horue, M., et al. (2020). Antimicrobialactivitiesofbacterialcellulose – Silver montmorillonitenanocomposites for woundhealing. Materials Science andEngineering: C, 116, 111152.
Horue, M., et al. (2023). BacterialCellulose-BasedMaterials as Dressings for WoundHealing.Pharmaceutics, 15, 424.
Islam,M. U. I., et al. (2017). Strategies for cost-effectiveandenhancedproductionofbacterialcellulose. Internationaljournalofbiologicalmacromolecules, 102, 1166-1173.
Jabbari, F. & Babaeipour, V. Bacterialcellulose as a potentialbiopolymer for woundcare. A review. InternationalJournalofPolymericMaterialsandPolymericBiomaterials.
Jiji, S., et al. (2020). Bacterialcellulosematrixwith in situ impregnationofsilvernanoparticles via catecholic redox chemistry for thirddegreeburnwoundhealing. Carbohydratepolymers, 245, 116573.
Jones, E. M., et al. (2015). The Effectof PH ontheExtracellular Matrix andBiofilms. Adv. WoundCare, 4, 431–439.
Joseph, B., et al. (2020). Cellulosenanocomposites: Fabricationandbiomedicalapplications. JournalofBioresourcesandBioproducts, 5(4), 223-237.
Kamal, T., et al. (2022). Developmentofplantextractimpregnatedbacterialcellulose as a greenantimicrobialcomposite for potentialbiomedicalapplications. Industrial CropsandProducts, 187, 115337.
Kathawala, M. H., et al. (2019). Healingofchronicwounds: an update ofrecentdevelopmentsand future possibilities. TissueEngineering Part B: Reviews, 25(5), 429-444.
Khalid, A., et al. (2017). Bacterialcellulose-zinc oxide nanocomposites as a novel dressing system for burnwounds. CarbohydratePolymers, 164, 214–221.
Khalid, A., et al. (2022). Multiwalledcarbonnanotubesfunctionalizedbacterialcellulose as anefficienthealing material for diabeticwounds. InternationalJournalofBiologicalMacromolecules, 203, 256-267.
Khan, S., et al. (2015). Bacterialcellulose-titaniumdioxidenanocomposites: Nanostructuralcharacteristics, antibacterialmechanism, andbiocompatibility. Cellulose, 22, 565–579.
Kloc, M., et al. (2019). Macrophagefunctions in woundhealing. JournalofTissueEngineeringandRegenerative Medicine, 13, 99–109.
Kotcharat, P., et al. (2022). Enhanced Performance of Aloe vera‐IncorporatedBacterialCellulose/PolycaprolactoneCompositeFilm for WoundDressingApplications.JournalofPolymersandtheEnvironment, 30, 1151–1161.
Kwak, M. H., et al. (2015). BacterialCelluloseMembraneProducedbyAcetobacter Sp. A10 for Burn WoundDressingApplications. Carbohydratepolymers, 122, 387–398.
Lachiewicz, A. M., et al. (2017). Bacterialinfectionsafterburn injuries: impactofmultidrugresistance. Clinical InfectiousDiseases, 65(12), 2130-2136.
Le Ouay, B. &Stellacci, F. (2015). Antibacterialactivityofsilvernanoparticles: A surface science insight. Nano Today, 10, 339–354.
Lemnaru, G. M., et al. (2020). Antibacterialactivityofbacterialcelluloseloadedwithbacitracinandamoxicillin: In vitro studies. Molecules, 25(18), 4069.
Lemnaru, G. M., et al. (2023). AntimicrobialWoundDressingsbasedonBacterialCelluloseandIndependentlyLoadedwithNutmegandFirNeedleEssentialOils. Polymers, 15, 17, 3629.
Li, D. & Wu, N. (2022). Mechanismandapplicationofexosomes in thewoundhealingprocess in diabetes mellitus. Diabetes Researchand Clinical Practice, 187, 109882.
Li, Y., et al. (2015). EvaluationoftheEffectoftheStructureofBacterialCelluloseon Full ThicknessSkinWoundRepairon a Microfluidic Chip. Biomacromolecules,16, 780–789.
Lopes, F. M., et al. (2011). Impacto socioeconômico das feridas crônicas. Projeto Temático, Parecer 14/2010, Universidade de Trás-os-Montes e Alto douro, Vila real, Portugal.
Malmir, S., et al. (2020). Antibacterialpropertiesof a bacterialcellulose CQD-TiO2 nanocomposite.CarbohydratePolymers, 234, 115835.
Mcdermott, K., et al. (2023). Etiology, epidemiology, anddisparities in theburdenofdiabeticfootulcers.Diabetes Care, 46(1), 209-221.
Mcdermott, M. M., et al.(2022). Effectoftelmisartanonwalking performance in patientswithlowerextremityperipheralarterydisease: The TELEX randomizedclinicaltrial. JAMA, 328(13), 1315-1325.
Meng, E., et al. (2019). Bioapplicationsofbacterialcellulosepolymersconjugatedwith resveratrol for epithelialdefectregeneration. Polymers, 11(6), 1048.
Moritz, S., et al. (2014). Active wounddressingsbasedonbacterialnanocellulose as drug delivery system for octenidine. Int JPharm, 471, 45–55.
Noal, H., et al. (2023). Custo-efetividade do tratamento de feridas crônicas. Revista Eletrônica Acervo Enfermagem, 23(2).
Oliveira, G. M., et al. (2023). Bacterialcellulosebiomaterials for thetreatmentoflowerlimbulcers. Revista do Colégio Brasileiro de Cirurgiões, 50, e20233536.
Ossowicz-Rupniewska, P., et al. (2021). Transdermal Delivery Systems for IbuprofenandIbuprofenModifiedwith Amino AcidsAlkylEstersBasedonBacterialCellulose. InternationalJournalof Molecular Sciences, 22, 6252.
Pal, S., et al. (2017). Silver-functionalizedbacterialcellulose as antibacterialmembrane for wound-healingapplications. ACS Omega, 2, 3632–3639.
Pancu, D. F., et al.(2021). Antibiotics: conventionaltherapyand natural compoundswithantibacterialactivity—a pharmaco-toxicologicalscreening. Antibiotics, 10(4), 401.
Pasaribu, K. M., et al. (2020). Characterizationofbacterialcellulose-basedwounddressing in differentorderimpregnationofchitosanandcollagen. Biomolecules, 10(11), 1511.
Patel, S., et al. (2019). Mechanistic insight intodiabeticwounds: Pathogenesis, molecular targets andtreatmentstrategiesto pace woundhealing. Biomed. Pharmacother, 112,108615.
Paterson-Beedle, M., et al. (2000). A cellulosicexopolysaccharideproducedfromsugarcanemolassesby a Zoogloea sp. CarbohydratePolymers, 42(4), 375-383.
De Amorim, J. P., et al. (2022). BacterialCellulose as a Versatile Biomaterial for WoundDressingApplication.Molecules, 27, 5580.
Pinto, F. C. M., et al. (2016). Acutetoxicity, cytotoxicity, genotoxicityandantigenotoxiceffectsof a cellulosicexopolysaccharideobtainedfromsugarcanemolasses. Carbohydratepolymers, 137, 556-560.
Pita-Vilar, M., et al. (2023). et al. Recentadvances in 3D printedcellulose-basedwounddressings: A review on in vitro and in vivo achievements.CarbohydratePolymers, 321, 121298.
Qin, J., et al. (2022). Recentadvances in bioengineeredscaffolds for cutaneouswoundhealing. Frontiers in BioengineeringandBiotechnology, 10, 841583.
Quintana, H., et al. (2021). Bacterialcellulosemembraneenrichedwithfibroblastgrowthfactorassociatedwithphotobiomodulation: In vitro evaluation. World JournalofAdvancedResearchand Reviews, 9(2), 076–089.
Rajendiran, K., et al. (2019). AntimicrobialActivityandMechanismofFunctionalized Quantum Dots. Polymers, 11, 1670.
Rajesh, A., et al. (2023). A systemic review on Aloe vera derived natural biomaterials for woundhealing: Preparationandapplication. BiocatalysisandAgriculturalBiotechnology, 102910.
Ramírez-Carmona, M., et al. (2023). ProductionofBacterialCelluloseHydrogeland its Evaluation as a Proton Exchange Membrane.JournalofPolymersandtheEnvironment, 31, 2462–2472.
Rasouli, M., et al. (2023). Bacterialcellulose as potentialdressingandscaffold material: towardimprovingtheantibacterialandcelladhesionproperties. JournalofPolymersandtheEnvironment, 1-20.
Raut, M., et al. (2023). BacterialCellulose-Based Blends andComposites: VersatileBiomaterials for TissueEngineeringApplications.InternationalJournalof Molecular Sciences, 24, 986.
Resolução Da Diretoria Colegiada - RDC nº 751, de 15 de setembro de 2022.
Riaz, S., et al. (2021). Chemical CharacteristicsandTherapeuticPotentialsof Aloe vera. RADS JournalofBiologicalResearch& Applied Sciences, 12(2), 160-166.
Rodríguez-Cabello, J. C., et al. (2018). Bioactivescaffoldsbasedonelastin-like materials for woundhealing. Advanceddrug delivery reviews, 129, 118-133.
Rother, E. T.. (2007). Revisão sistemática X revisão narrativa. Acta Paulista De Enfermagem, 20(2), v–vi. https://doi.org/10.1590/S0103-21002007000200001.
Sajjad, W., et al. (2020). FabricationofBacterialCellulose-CurcuminNanocomposite as a Novel Dressing for PartialThicknessSkin Burn. Frontiers in BioengineeringandBiotechnology, 8, 553037.
Salim, S., et al. (2021). Global epidemiologyofchronicvenousdisease: a systematic review withpooledprevalenceanalysis.AnnalsofSurgery, 274(6), 971-976.
Sanchavanakit, N., et al. (2006). Growth ofHumanKeratinocytesandFibroblastsonBacterialCelluloseFilm. BiotechnologyProgress, 22(4), 1194-9.
Santos, L. E., et al. (2021). Segurança e eficácia da celulose bacteriana obtida a partir do melaço de cana-de-açúcar no processo de cicatrização e remodelamento tecidual: uma revisão narrativa. Research, Society andDevelopment, 10(16).
Santos, S. M., et al. (2015). Characterizationofpurifiedbacterialcellulosefocusedon its use onpaperrestoration. Carbohydratepolymers, 116, 173-181.
Savitskaya, I. S., et al. (2019). Antimicrobialandwoundhealingpropertiesof a bacterialcellulosebased material containing B. subtiliscells. Heliyon, 5(10).
Schiefer, J. L., et al. (2021). Comparisonofwoundhealingandpatientcomfort in partial‐thicknessburnwoundstreatedwith SUPRATHEL andepictehydrowounddressings. Internationalwoundjournal, 19(4), 782-790.
Schneider, C.,Stratman, S. &Kirsner, R. S. (2021). Lower extremityulcers. Medical Clinics, 105(4), 663-679.
Sen, C. K., et al. (2009). Humanskinwounds: a major andsnowballingthreattopublichealthandtheeconomy.WoundRepairRegen, 17(6), 763–71.
Silva, L. G., et al. (2021). Bacterialcelluloseaneffective material in thetreatmentofchronicvenousulcersofthelowerlimbs. J MaterSciMater Med,7, 79–79.
Solway, D. R., et al. (2011). A parallel open‐labeltrialtoevaluate microbial cellulosewounddressing in thetreatmentofdiabeticfootulcers. InternationalWoundJournal, 8(1), 69-73.
Sulaeva, I., et al. (2020). Fabricationofbacterialcellulose-basedwounddressingswithimproved performance byimpregnationwithalginate. Materials Science andEngineering: C, 110, 110619.
Swaminathan, J., et al. (2020). Bacterialcellulosematrixwith in situ impregnationofsilvernanoparticles via catecholic redox chemistry for thirddegreeburnwoundhealing.CarbohydratePolymers, 245, 116573.
Swingler, S., et al. (2019). Aninvestigationintotheanti-microbialpropertiesofbacterialcellulosewounddressingsloadedwithcurcumin: hydroxypropyl-β-cyclodextrin supramolecular inclusioncomplex. Microbiology Society, 1(10).
Swingler, S., et al. (2021). Recentadvancesandapplicationsofbacterialcellulose in biomedicine. Polymers, 13, 412.
Torgbo, S. &Sukyai, P. (2020). Biodegradationandthermalstabilityofbacterialcellulose as biomaterial: The relevance in biomedicalapplications. Polymer DegradationandStability, 179, 109232.
Tsouko, E., et al. (2015). Bacterialcelluloseproductionfrom industrial wasteandby-productstreams. Internationaljournalof molecular sciences, 16(7), 14832-14849.
Ul-Islam, M., et al. (2017). Strategies for cost-effectiveandenhancedproductionofbacterialcellulose. InternationalJournalofBiologicalMacromolecules, 102, 1166–1173.
Ul-Islam, M., et al. (2014). Synthesisofregeneratedbacterialcellulose-zinc oxide nanocompositefilms for biomedicalapplications. Cellulose, 21, 433–447.
Ullah, M., et al. (2017). Recentadvancements in bioreactionsofcellularandcell-free systems: A studyofbacterialcellulose as a model. Korean Journalof Chemical Engineering, 34, 1591–1599.
Volova, T. G., et al. (2018). Antibacterialpropertiesoffilmsofcellulosecompositeswithsilvernanoparticlesandantibiotics. Polymer Testing,65, 54-68.
Wahid, F., et al. (2021). Fabricationofbacterialcellulose-baseddressings for promotinginfectedwoundhealing. ACS Applied Materials& Interfaces, 13(28), 32716-32728.
Wan, Y., et al. (2020). Scalablesynthesisofrobustandstretchablecompositewounddressingsbydispersingsilvernanowires in continuousbacterialcellulose. Composites Part B: Engineering, 199, 108259.
Wiegand, C., et al. (2015). Antimicrobialfunctionalizationofbacterialnanocellulosebyloadingwithpolihexanideandpovidone-iodine. JournalofMaterials Science: Materials in Medicine, 26, 245.
Wu, Y., et al. (2023). Bacterialcellulose-baseddressingswithphotothermalbactericidalactivityand pro-angiogenicability for infectedwoundhealing. JournalofMaterials Science & Technology, 160, 76-85.
Yang, Z., et al. (2022). Designmentofpolydopamine/bacterialcelluloseincorporatingcopper (II) sulfate as anantibacterialwounddressing. BiomaterialsAdvances, 134, 112591.
Zahel, P., et al. (2022). BacterialCellulose - Adaptationof a Nature-Identical Material totheNeedsofAdvancedChronicWoundCare.Pharmaceuticals (Basel), 15(6), 683.
Zandi, N., et al. (2021). et al. Biomimeticnanoengineeredscaffold for enhanced full-thicknesscutaneouswoundhealing.Acta Biomaterialia, 124, 191-204.
ZHANG, P., et al. (2017). Global epidemiologyofdiabeticfootulceration: asystematic review and meta-analysis.Ann Med, 49, 106-16.
Zheng, L., et al. (2020). LatestAdvancesonBacterialCellulose-BasedAntibacterialMaterials as WoundDressings. Frontiers in BioengineeringandBiotechnology, 8, 593768.
Zmejkoski, D. Z., et al. (2022). Antibacterialcompositehydrogelsof graphene quantum dotsandbacterialcelluloseacceleratewoundhealing. JournalofBiomedicalMaterialsResearch Part B: Applied Biomaterials, 110(8), 1796-1805.
Zywicka, A., et al. (2018). Modification of bacterial celulose with quaternaryammoniumcompoundsbasedonfattyacids and amino acidsandtheeffectonantimicrobialactivity. Biomacromolecules, 19(5), 1528-1538.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Sarah Brandão Palácio; Simone Oliveira Penello; Caroline Tavares da Mota Monteiro; Raquel Cristina Henriques Marchetti; Alexandre de Arruda Graeff; Marcela Jaqueline Braga de Paiva; Layla Carvalho Mahnke; Flávia Cristina Morone Pinto; Marco Carneiro Teixeira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.