Aplicação da Neuro-Fuzzy a quantificação química do capim-elefante: Uma revisão bibliográfica sistemática

Autores

DOI:

https://doi.org/10.33448/rsd-v13i2.44927

Palavras-chave:

Sustentabilidade rural; Biomassa; Celulose; Pennisetum purpureum.

Resumo

A transição para fontes de energias renováveis podem ajudar a combater as mudanças climáticas, pois emitem menos emissões de gases de efeito estufa. A biomassa é um fonte importante de produção de energia, sendo composta por materiais orgânicos, como restos de culturas agrícolas, florestais dentre outros, com destaque o capim-elefante. A aplicação da Neuro-Fuzzy nos processos produtivos, principalmente laboratoriais é de suma importância, pois permite a criação de modelos de previsão e controle mais precisos e eficientes no context bioenergético. Diante desse contexto, o objetivo desse artigo é identificar como está configurado o estado do conhecimento sobre a aplicação do uso da Neuro-Fuzzy para o processo de quantificação química da celulose do capim-elefante. Foi realizado uma Revisão Bibliográfica Sistemática para busca e mapeamento de dados científicos publicados para identificar inumeras aplicações do uso da Neuro-Fuzzy principalmente nas energias renováveis. Com a realização da pesquisa utilizando a Revisão Bibliográfica Sistêmica, foi possível identificar diversas oportunidades da aplicação da Neuro-Fuzzy na quantificação química do capim-elefante.  Entretanto, foi observado que esse artigo apresenta um ineditismo sobre a aplicação do uso da Neuro-Fuzzy para o processo de quantificação química da celulose, além da produção do bioethanol desta biomassa. Dos 22 documentos analisados nesta pesquisa, 100% foram de artigos em forma de pesquisa aplicada e de revisão de literatura, demonstrando uma grande relevância nesta linha de pesquisa que é a aplicação da Inteligência Artificial em processos produtivos de campo e laboratorial utilizando o capim-elefante como biomassa para a produção de bioetanol.

Referências

Adedeji, P. A., Akinlabi, S. A., Madushele, N., & Olatunji, O. O. (2020). Neuro-Fuzzy resource forecast in site suitability assessment for wind and solar energy: A mini review. Journal of Cleaner Production, 269, 122104. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122104

Adelekan, D. S., Ohunakin, O. S., & Paul, B. S. (2022). Artificial intelligence models for refrigeration, air conditioning and heat pump systems. Energy Reports, 8, 8451–8466. https://doi.org/10.1016/j.egyr.2022.06.062

Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631–653. https://doi.org/10.1016/j.rser.2016.07.015

Amosov, O. S., Ivanov, Y. S., & Zhiganov, S. V. (2017). Human Localization in the Video Stream Using the Algorithm Based on Growing Neural Gas and Fuzzy Inference. Procedia Computer Science, 103, 403–409. https://doi.org/https://doi.org/10.1016/j.procs.2017.01.128

Anusree, K., & Varghese, K. O. (2016). Streamflow Prediction of Karuvannur River Basin Using ANFIS, ANN and MNLR Models. Procedia Technology, 24, 101–108. https://doi.org/https://doi.org/10.1016/j.protcy.2016.05.015

Araújo Júnior, C. A., Silva, L. F. Da, Silva, M. L. Da, Leite, H. G., Valdetaro, E. B., Donato, D. B., & Castro, R. V. O. (2016). Modelagem e prognose do preço de carvão usando um sistema Neuro-Fuzzy. Cerne, 22(2), 151–158. https://doi.org/10.1590/0104776020162222103

Bandeira, E. L., Ferreira, V. C., & Cabral, A. C. de A. (2019). [ARTIGO RETRATADO] Conflito trabalho-família: a produção científica internacional e a agenda de pesquisa nacional. REAd. Revista Eletrônica de Administração (Porto Alegre), 25(1), 49–82. https://doi.org/10.1590/1413-2311.232.87660

Borisov, V., & Luferov, V. (2020). Neuro-Fuzzy Cognitive Temporal Models for Predicting Multidimensional Time Series With Fuzzy Trends. Computación y Sistemas, 24(3), 1165–1177. https://doi.org/10.13053/cys-24-3-3477

Bressane, A., Bagatini, J. A., Biagolini, C. H., Arnaldo, J., Roveda, F., Regina, S., Roveda, M. M., Fengler, F. H., & Longo, R. M. (2018). Neuro-Fuzzy modeling: a promising alternative for risk analysis in urban afforestation management. Revista Árvore, 42(1), 420106. https://doi.org/10.1590/1806-90882018000100006

Cabeza, R. T., & Potts, A. S. (2021). Fault diagnosis and isolation based on Neuro-Fuzzy models applied to a photovoltaic system. IFAC-PapersOnLine, 54(14), 358–363. https://doi.org/10.1016/j.ifacol.2021.10.380

Conforto, E. C., Amaral, D. C., & Silva, S. L. Da. (2011). Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projetos. 8° Congresso Brasileiro de Gestão de Desenvolvimento de Produto - CNGDP 2011, 1–12. http://www.ufrgs.br/cbgdp2011/downloads/9149.pdf

Dasgupta, A., Grimaldi, S., Ramsankaran, R. A. A. J., Pauwels, V. R. N., & Walker, J. P. (2018). Towards operational SAR-based flood mapping using Neuro-Fuzzy texture-based approaches. Remote Sensing of Environment, 215, 313–329. https://doi.org/10.1016/j.rse.2018.06.019

Dokbua, B., Waramit, N., Chaugool, J., & Thongjoo, C. (2020). Biomass Productivity, Developmental Morphology, and Nutrient Removal Rate of Hybrid Napier Grass (Pennisetum purpureum x Pennisetum americanum) in Response to Potassium and Nitrogen Fertilization in a Multiple-Harvest System. Bioenergy Research, 14, 1106-1117. https://doi.org/10.1007/s12155-020-10212-w

Fernandes, F. R., Cardoso, T. A., Capaverde, L. Z., & Silva, H. de F. N. (2016). Comunidades de prática: uma revisão bibliográfica sistemática sobre casos de aplicação organizacional. AtoZ: Novas Práticas em Informação e Conhecimento, 5(1), 44. https://doi.org/10.5380/atoz.v5i1.46691

Godinho, E. Z., De Pietri, E., & Gasparotto, H. V. (2021). A dificuldade na aprendizagem da matemática. Studies in Education Sciences, 1(1), 2–19. https://doi.org/10.54019/sesv1n1-001

Godoy, F. O. de, Godinho, E. Z., Daltin, R. S., & Caneppele, F. D. L. (2020). Utilização da lógica fuzzy aplicada à energia solar. Cadernos de Ciência & Tecnologia, 37(2), 26663. https://doi.org/10.35977/0104-1096.cct2020.v37.26663

Heddam, S., Bermad, A., Dechemi, N., Heddam, S., Bermad, A., Dechemi, · N, & Dechemi, N. (2012). ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study. Environ Monit Assess, 184, 1953–1971. https://doi.org/10.1007/s10661-011-2091-x

Huang, H., Band, S. S., Karami, H., Ehteram, M., Chau, K., & Zhang, Q. (2022). Solar radiation prediction using improved soft computing models for semi-arid, slightly-arid and humid climates. Alexandria Engineering Journal, 61(12), 10631–10657. https://doi.org/https://doi.org/10.1016/j.aej.2022.03.078

Jamma, M., Joshi, D., Akherraz, M., & Bennassar, A. (2018). Direct Power Neuro-Fuzzy Controller Scheme of Three-Phase PWM Rectifiers for Power Quality Improvement. Procedia Computer Science, 132, 595–605. https://doi.org/10.1016/j.procs.2018.05.013

Khatibi, R., & Nadiri, A. A. (2021). Inclusive Multiple Models (IMM) for predicting groundwater levels and treating heterogeneity. Geoscience Frontiers, 12(2), 713–724. https://doi.org/https://doi.org/10.1016/j.gsf.2020.07.011

Kullavanijaya, P., & Chavalparit, O. (2020). The effect of ensiling and alkaline pretreatment on anaerobic acidification of napier grass in the leached bed process. Environmental Engineering Research, 25(5), 668–676. https://doi.org/10.4491/eer.2019.231

Lins, A. C. d. S. S., Lourençoni, D., Júnior, T. Y., Miranda, I. B., & Santos, I. E. do. A. (2021). Neuro-Fuzzy Modeling of Eyeball and Crest Temperatures in Egg-laying Hens. Engenharia Agricola, 41(1), 34–38. https://doi.org/10.1590/1809-4430-ENG.AGRIC.V41N1P34-38/2021

Macêdo, A. J. da S., Neto, J. M. C., Silva, M. A. da, & Santos, E. M. (2019). Potencialidades e limitações de plantas forrageiras para ensilagem: Revisão. Revista Brasileira de Higiene e Sanidade Animal, 13(2), 320–337.

Malami, S. I., Anwar, F. H., Abdulrahman, S., Haruna, S. I., Ali, S. I. A., & Abba, S. I. (2021). Implementation of hybrid Neuro-Fuzzy and self-turning predictive model for the prediction of concrete carbonation depth: A soft computing technique. Results in Engineering, 10, 100228. https://doi.org/10.1016/j.rineng.2021.100228

Millward-Hopkins, J., & Purnell, P. (2019). Circulating blame in the circular economy: The case of wood-waste biofuels and coal ash. Energy Policy, 129, 168–172. https://doi.org/10.1016/j.enpol.2019.02.019

MME, M. de M. e E. (2020). BALANÇO ENERGÉTICO NACIONAL. In Empresa de Pesquisa Energética- EPE (p. 264).

Olatunji, O. O., Adedeji, P. A., Madushele, N., Akinlabi, S., & Dicarlo, A. A. (2022). Modelling Biomass Elemental Composition: A Neurofuzzy Approach. Procedia Computer Science, 200, 1736–1745. https://doi.org/10.1016/j.procs.2022.01.374

Palacio, J. C. (2020). Application of Neuro-Fuzzy systems in the classification of reports in scheduling problems Introducción. Revista Cubana de Ciencias Informáticas, 14(4), 34–47.

Pereira, W., & Paula, N. de. (2017). Fomento federal ao etanol de segunda geração no Brasil: um exame da atuação da FINEP e do BNDES. Revista de Políticas Públicas, 20(2), 805. https://doi.org/10.18764/2178-2865.v20n2p805-824

Puri, M., Abraham, R. E., & Barrow, C. J. (2012). Biofuel production: Prospects, challenges and feedstock in Australia. Renewable and Sustainable Energy Reviews, 16(8), 6022–6031. https://doi.org/10.1016/j.rser.2012.06.025

Saleem, B., Badar, R., Judge, M. A., Manzoor, A., Islam, S. ul, & Rodrigues, J. J. P. C. (2021). Adaptive recurrent NeuroFuzzy control for power system stability in smart cities. Sustainable Energy Technologies and Assessments, 45, 101089. https://doi.org/https://doi.org/10.1016/j.seta.2021.101089

Santos Cabral, M. M., de Souza Abud, A. K., de Farias Silva, C. E., & Garcia Almeida, R. M. R. (2016). Bioethanol production from coconut husk fiber. Ciência Rural, 46(10), 1872–1877.

Singh, H., & Bharadvaja, N. (2021). Treasuring the computational approach in medicinal plant research. Progress in Biophysics and Molecular Biology, 164, 19–32. https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2021.05.004

Suparta, W., & Samah, A. A. (2020). Rainfall prediction by using ANFIS times series technique in South Tangerang, Indonesia. Geodesy and Geodynamics, 11(6), 411–417. https://doi.org/10.1016/j.geog.2020.08.001

Tenorio, C., Moya, R., Filho, M. T., & Valaert, J. (2015). Quality of pellets made from agricultural and forestry crops in Costa Rican tropical climates. BioResources, 10(1), 482–498. https://doi.org/10.15376/biores.10.1.482-498

Tojeiro, D. O., Cabeza, R. T., & Potts, A. S. (2021). Fault detection based on Neuro-Fuzzy models and residual evaluation with fuzzy thresholds applied to a photovoltaic system. IFAC-PapersOnLine, 54(20), 717–722. https://doi.org/10.1016/j.ifacol.2021.11.256

Winchester, N., & Reilly, J. M. (2015). The feasibility, costs, and environmental implications of large-scale biomass energy. Energy Economics, 51, 188–203. https://doi.org/10.1016/j.eneco.2015.06.016

Yadav, P. K., Bhasker, R., & Upadhyay, S. K. (2022). Comparative study of ANFIS fuzzy logic and neural network scheduling-based load frequency control for two-area hydro thermal system. Materials Today: Proceedings, 56, 3042–3050. https://doi.org/https://doi.org/10.1016/j.matpr.2021.12.041

Downloads

Publicado

17/02/2024

Como Citar

GODINHO, E. Z. .; CANEPPELE, F. de L. .; FLORIANO, C. Aplicação da Neuro-Fuzzy a quantificação química do capim-elefante: Uma revisão bibliográfica sistemática . Research, Society and Development, [S. l.], v. 13, n. 2, p. e6613244927, 2024. DOI: 10.33448/rsd-v13i2.44927. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/44927. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Exatas e da Terra