Inter-relação de técnica de manejo de água e solo aplicadas a cultura do milheto: uma revisão
DOI:
https://doi.org/10.33448/rsd-v9i7.4503Palavras-chave:
Águas cinzas; Reuso de água; Adubação orgânica; Estresse hídrico.Resumo
A agropecuária está enfrentando um grande desafio em todo o mundo, devido à escassez de recursos hídricos. Visando aumentar a disponibilidade hídrica, estudos com água residuária na agricultura têm sido incentivados. Dentre as águas residuais, as águas cinzas são as mais viáveis e seguras, pois possuem menores cargas microbianas. Além disso, a utilização dos recursos hídricos na agricultura, pode ser mais eficiente ao associar a água residuária com outras práticas agrícolas como a redução das lâminas de irrigação, uso de espécies vegetais tolerantes ao déficit hídrico (como a cultura do milheto) e um manejo nutricional equilibrado proporcionado pela adubação orgânica. Dispor do máximo de informações sobre técnicas de cultivo de milheto é essencial para o sucesso da cultura em áreas com baixa disponibilidade hídrica, como a região semiárida brasileira. Assim, objetivou-se com esta revisão apresentar técnicas alternativas de manejo (reuso de água, irrigação por déficit e adubação orgânica) que integradas ao cultivo do milheto (Pennisetum glaucum (L.) R. Br.), visando um incremento de produtividade com uso eficiente da água. Diversas pesquisas foram realizadas em bancos de dados (ScienceDirect, Scopus, Mendeley e Google Scholar) sem restrição de idioma, com literatura de expressiva relevância em Ciências Agrárias. A interação da redução de lâmina de irrigação atrelada a uma adubação orgânica pode ser uma boa alternativa para aumentar a eficiência do uso da água no milheto, e consequentemente a sua produção, durante os períodos de estiagem.
Referências
Abreu Júnior, C. H., Boaretto, A. E., Muraoka, T., & Castro Kiehl, J. (2005). Uso agrícola de resíduos orgânicos potencialmente poluentes: Propriedades químicas do solo e produção vegetal. Tópicos em Ciência do Solo, 4, 391-470.
Affholder, F. (1995). Effect of organic matter input on the water balance and yield of millet under tropical dryland condition. Field Crops Research, 41(2), 109–121. https://doi.org/10.1016/0378-4290(94)00115-S
Aguiar, A. A.S., Matias, S. S. R., Souza, R. R., Silva, R. L., & Nobrega, J. C. A. (2012). Desenvolvimento do milheto sob adubação orgânica no município de Corrente-PI. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 7(4), 90-96.
Albuquerque, F. S., Silva, Ê. F. F., Lopes, P. M. O., Moura, G. B. A., & Silva, A. O. (2018). Condições hídricas e crescimento vegetal de culturas agrícolas importantes para comunidades indígenas do semiárido brasileiro. Revista Ceres, 65(2), 111-119. http://dx.doi.org/10.1590/0034-737x201865020001
Ashekuzzaman, S. M., Forrestal, P., Richards, K., & Fenton, O. (2019). Dairy industry derived wastewater treatment sludge: Generation, type and characterization of nutrients and metals for agricultural reuse. Journal of Cleaner Production, 230, 1266-1275. https://doi.org/10.1016/j.jclepro.2019.05.025
Barros, V., Frosi, G., Santos, M., Ramos, D. G., Falcão, H. M., & Santos, M. G. (2018). Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species. Plant Physiology and Biochemistry, 127, 469-477. https://doi.org/10.1016/j.plaphy.2018.04.016
Bell, J. M., Schwartz, R. C., McInnes, K. J., Howell, T. A., & Morgan, C. L. (2020). Effects of irrigation level and timing on profile soil water use by grain sorghum. Agricultural Water Management, 232, 106030. https://doi.org/10.1016/j.agwat.2020.106030
Bertoncini, E. I. (2008). Tratamento de efluentes e reuso da água no meio agrícola. Revista Tecnologia & Inovação Agropecuária, 1(1), 152-169.
Bigas, H. (2012). The Global Water Crisis: Addressing an Urgent Security Issue. Hamilton: United Nations University – Institute for Water, Environment and Health (UNU‐INWEH).
Brandão, M., Carlos, B., & Lima, E. P. (2014). Reuso de água na agricultura. 1.ed. Brasília: Embrapa.
Bray, E. A. (1997). Plant responses to water deficit. Trends in Plant Science, 2(2), 48-54. https://doi.org/10.1016/S1360-1385(97)82562-9
Brunken, A. V. (1977). A systematic study of Pennisetum sect. Pennisetum (Gramineae). American Journal of Botany, 64(2), 161-176. https://doi.org/10.1002/j.1537-2197.1977.tb15715.x
Christofidis, D. (2006). Água na produção de alimentos: o papel da academia e da indústria no alcance do desenvolvimento sustentável. Revista de Ciências Exatas, 12(1), 37–46.
Cirilo, J. A., Montenegro, S. M. G. L., & Campos, J. N. B. (2017). The Issue of Water in the Brazilian Semi-Arid Region. In: de Mattos Bicudo C., Galizia Tundisi J., Cortesão Barnsley Scheuenstuhl M. (eds) Waters of Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-41372-3_5
Comas, L. H., Trout, T. J., DeJonge, K. C., Zhang, H., & Gleason, S. M. (2019). Water productivity under strategic growth stage-based deficit irrigation in maize. Agricultural Water Management, 212, 433-440. https://doi.org/10.1016/j.agwat.2018.07.015
Davies, W. J., Zhang, J., Yang, J., & Dodd, I. C. (2011). Novel crop science to improve yield and resource use efficiency in water-limited agriculture. The Journal of Agricultural Science, 149(1), 123-131. https://doi.org/10.1017/S0021859610001115
Dias-Martins, A. M., Pessanha, K. L. F., Pacheco, S., Rodrigues, J. A. S., & Carvalho, C. W. P. (2018). Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) in Brazil: Food security, processing, health benefits and nutritional products. Food Research International, 109, 175-186. https://doi.org/10.1016/j.foodres.2018.04.023
Egbuikwem, P. N., Mierzwa, J. C., & Saroj, D. P. (2020). Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions. Agricultural Water Management, 231, 106034. https://doi.org/10.1016/j.agwat.2020.106034
Erel, R., Eppel, A., Yermiyahu, U., Ben-Gal, A., Levy, G., Zipori, I., Schaumann, G. E., Mayer, O., & Dag, A. (2019). Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance. Agricultural Water Management, 213, 324-335. https://doi.org/10.1016/j.agwat.2018.10.033
Eyshi Rezaei, E., Gaiser, T., Siebert, S., Sultan, B., & Ewert, F. (2014). Combined impacts of climate and nutrient fertilization on yields of pearl millet in Niger. European Journal of Agronomy, 55, 77-88. https://doi.org/10.1016/j.eja.2014.02.001
Garcia-Cuerva, L., Berglund, E. Z., & Binder, A. R. (2016). Public perceptions of water shortages, conservation behaviors, and support for water reuse in the U.S. Resources, Conservation and Recycling, 113, 106-115. https://doi.org/10.1016/j.resconrec.2016.06.006
Hespanhol, I. (2002). Potencial de Reuso de Águas no Brasil: Agricultura, Municípios, Recarga de Aquíferos. Revista Brasileira de Recursos Hídricos, 7(4), 75–95.
Instituto Nacional do Semiárido – INSA (2012). Sinopse do censo demográfico para o semiárido brasileiro. Campina Grande-PB, 107p.
Ismail, S. M., El‐Nakhlawy, F. S., & Basahi, J. M. (2018). Sudan grass and pearl millets productivity under different irrigation methods with fully irrigation and stresses in arid regions. Grassland Science, 64(1), 29-39. https://doi.org/10.1111/grs.12179
Jardim, A. M. R. F., Silva, J. R. I., Leite, M. L. M. V., Teixeira, V. I., Morato, R. P., Araújo Júnior, G. N., & Silva, T. G. F. (2018). Symbiotic interaction in forage crop cultivations: A review. Amazonian Journal of Plant Research, 2(1), 149-160. https://doi.org/10.26545/ajpr.2018.b00019x
Jardim, A. M. R. F., Silva, J. R. I., Silva, M. J., Araújo Júnior, G. N. A., Souza, R., & Souza, E. S. (2020). Modelagem da perda de solo por erosão hídrica em Planossolo Háplico. Brazilian Journal of Development, 6(2), 6826-6834. https://doi.org/10.34117/bjdv6n2-107
Jardim, A. M. R. F., Silva, T. G. F., Souza, L. S. B., Alves, H. K. M. N., Araújo, J. F. N., Silva, G. I. N., & Silva, J. O. N. (2019). Dinâmica da água no solo com cultivo de palma forrageira sob quatro sistemas de plantio. Agrometeoros, 27(2), 357-365. http://dx.doi.org/10.31062/agrom.v27i2.26446
Jong van Lier, Q. (2010). Física do Solo. In: Jong van Lier, Q. (Ed.). Sociedade Brasileira de Ciência do Solo. 1a Edição ed. Viçosa-MG: Sociedade Brasileira de Ciência do Solo, 298p.
Kaushal, M., & Wani, S. P. (2016). Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems & Environment, 231, 68-78. https://doi.org/10.1016/j.agee.2016.06.031
Khushdil, F., Jan, F. G., Jan, G., Hamayun, M., Iqbal, A., Hussain, A., & Bibi, N. (2019). Salt stress alleviation in Pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus. Plant Physiology and Biochemistry, 144, 127-134. https://doi.org/10.1016/j.plaphy.2019.09.038
Kögler, F., & Söffker, D. (2017). Water (stress) models and deficit irrigation: System-theoretical description and causality mapping. Ecological Modelling, 361, 135-156. https://doi.org/10.1016/j.ecolmodel.2017.07.031
Kumar, K. A. (1989). Pearl millet: current status and future potential. Outlook on Agriculture, 18(2), 46-53. https://doi.org/10.1177/003072708901800201
Kumar, S., Hash, C. T., Nepolean, T., Mahendrakar, M. D., Satyavathi, C. T., Singh, G., Rathore, A., Yadav, R. S., Gupta, R., & Srivastava, R. K. (2018). Mapping grain iron and zinc content quantitative trait loci in an iniadi-derived immortal population of pearl millet. Genes, 9(5), 248. https://doi.org/10.3390/genes9050248
Leong, J. Y. C., Oh, K. S., Poh, P. E., & Chong, M. N. (2017). Prospects of hybrid rainwater-greywater decentralised system for water recycling and reuse: A review. Journal of Cleaner Production, 142, 3014-3027. https://doi.org/10.1016/j.jclepro.2016.10.167
Li, X., Kang, S., Zhang, X., Li, F., & Lu, H. (2018). Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2. Agricultural Water Management, 195, 71-83. https://doi.org/10.1016/j.agwat.2017.09.017
Lima, L. R., Silva, T. G. F., Jardim, A. M. R. F., Souza, C. A. A., Queiroz, M. G., & Tabosa, J. N. (2018). Growth, water use and efficiency of forage cactus sorghum intercropping under different water depths. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(2), 113-118. https://doi.org/10.1590/1807-1929/agriambi.v22n2p113-118
Liu, F., Fu, X., Wu, G., Feng, Y., Li, F., Bi, H., & Ai, X. (2020). Hydrogen peroxide is involved in hydrogen sulfide-induced carbon assimilation and photoprotection in cucumber seedlings. Environmental and Experimental Botany, 175, 104052. https://doi.org/10.1016/j.envexpbot.2020.104052
Loy, S., Assi, A. T., Mohtar, R. H., Morgan, C., & Jantrania, A. (2018). The effect of municipal treated wastewater on the water holding properties of a clayey, calcareous soil. Science of The Total Environment, 643, 807-818. https://doi.org/10.1016/j.scitotenv.2018.06.104
Marengo, J. A., Alves, L. M., Alvala, R., Cunha, A. P., Brito, S., & Moraes, O. L. (2018). Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region. Anais da Academia Brasileira de Ciências, 90(2), 1973-1985. https://doi.org/10.1590/0001-3765201720170206
Mashhadi Ali, A., Shafiee, M. E., & Berglund, E. Z. (2017). Agent-based modeling to simulate the dynamics of urban water supply: Climate, population growth, and water shortages. Sustainable Cities and Society, 28, 420–434. https://doi.org/10.1016/j.scs.2016.10.001
Medici, L. O., Reinert, F., Carvalho, D. F., Kozak, M., & Azevedo, R. A. (2014). What about keeping plants well watered?. Environmental and Experimental Botany, 99, 38-42. https://doi.org/10.1016/j.envexpbot.2013.10.019
Menezes, L. A. N., & Mattos, A. T. (2018). Condutividade elétrica do solo em função da dose de aplicação de água residuária em áreas de fertirrigação. Revista Engenharia na Agricultura, 26(4), 383–389. https://doi.org/10.13083/reveng.v26i4.956
Munns, R., James, R. A., Sirault, X. R., Furbank, R. T., & Jones, H. G. (2010). New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany, 61(13), 3499-3507. https://doi.org/10.1093/jxb/erq199
Nelson, W. C. D., Hoffmann, M. P., Vadez, V., Roetter, R. P., & Whitbread, A. M. (2018). Testing pearl millet and cowpea intercropping systems under high temperatures. Field Crops Research, 217, 150-166. https://doi.org/10.1016/j.fcr.2017.12.014
Oliveira, A. M., da Silva Dias, N., de Sousa Gurgel, G. C., Rabelo, L. N., Souza Melo, M. R., & Santos, M. V. (2018). Impactos físico-químicos do descarte de rejeito salino em Neossolo e Chernossolo do oeste Potiguar, Brasil. Revista Irriga, 23(3), 413–425. http://dx.doi.org/10.15809/irriga.2018v23n3p413-425
Oliveira, F. A., Carrilho, M. J. O. S., Medeiros, J. F., Maracajá, P. B., & Oliveira, M. K. (2011). Desempenho de cultivares de alface submetidas a diferentes níveis de salinidade da água de irrigação. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(8), 771-777. https://doi.org/10.1590/S1415-43662011000800002
Pereira Filho, I. A., Ferreira, A. S., Coelho, A. M., Casela, C. R., Karam, D., Rodrigues, J. A. S., Cruz, J. C., & Waquil, J. M. (2003). Manejo da cultura do milheto. Sete Lagoas, MG: Empresa brasileira de pesquisa agropecuária – EMBRAPA-CNPMS. (Circular Técnica, 28). Disponível em: <http://www.cnpms.embrapa.br/publicacoes/publica/2003/circular/Circ_29.pdf>. Acesso em: 12 janeiro 2020.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisa-Cientifica.pdf?sequence=1. Acesso em: 10 maio 2020.
Rebouças, J. R. L., Dias, N. S., Gonzaga, M. I. S., Gheyi, H. R., & Sousa Neto, O. N. (2010). Crescimento do feijão-caupi irrigado com água residuária de esgoto doméstico tratado. Revista Caatinga, 23(1), 97-102.
Rezaei, E. E., Gaiser, T., Siebert, S., Sultan, B., & Ewert, F. (2014). Combined impacts of climate and nutrient fertilization on yields of pearl millet in Niger. European Journal of Agronomy, 55, 77-88. https://doi.org/10.1016/j.eja.2014.02.001
Rostamza, M., Chaichi, M. R., Jahansouz, M. R., & Alimadadi, A. (2011). Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels. Agricultural Water Management, 98(10), 1607-1614. https://doi.org/10.1016/j.agwat.2011.05.014
Roussos, P. A., Gasparatos, D., Kechrologou, K., Katsenos, P., & Bouchagier, P. (2017). Impact of organic fertilization on soil properties, plant physiology and yield in two newly planted olive (Olea europaea L.) cultivars under Mediterranean conditions. Scientia Horticulturae, 220, 11-19. https://doi.org/10.1016/j.scienta.2017.03.019
Santos, D. P., Santos, C. S., Silva, L. M., Santos, M. A. L., & Santos, C. G. (2018). Performance of methods for estimation of table beet water requirement in Alagoas. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(3), 189-193. http://dx.doi.org/10.1590/1807-1929/agriambi.v22n3p189-193
Santos, R., Neves, A. L., Pereira, L. G., Verneque, R., Costa, C. T., Tabosa, J., Scherer, C., & Gonçalves, L. (2017). Divergence in agronomic traits and performance of pearl millet cultivars in Brazilian semiarid region. Grassland Science, 63(2), 118-127. https://doi.org/10.1111/grs.12154
Savic, S., Stikic, R., Zaric, V., Vucelic-Radovic, B., Jovanovic, Z., Marjanovic, M., Djordjevic, S., & Petkovic, D. (2011). Deficit irrigation technique for reducing water use of tomato under polytunnel conditions. Journal of Central European Agriculture, 12(4), 590-600. https://doi.org/10.5513/JCEA01/12.4.960
Schaer-Barbosa, M., Santos, M. E. P. D., & Medeiros, Y. D. P. (2014). Viabilidade do reúso de água como elemento mitigador dos efeitos da seca no semiárido da Bahia. Ambiente & Sociedade, 17(2), 17-32. https://doi.org/10.1590/S1414-753X2014000200003
Silva, C. L., Bassi, N. S. S., & Rocha Junior, W. F. (2016). Technologies for rational water use in Brazilian agriculture. Revista Ambiente & Água, 11(2), 239-249. https://doi.org/10.4136/ambi-agua.1808
Silva, E. N., Ribeiro, R. V., Ferreira-Silva, S. L., Viégas, R. A., & Silveira, J. A. G. (2010). Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. Journal of Arid Environments, 74(10), 1130-1137. https://doi.org/10.1016/j.jaridenv.2010.05.036
Silva, J. R. I., Jardim, A. M. R. F., Barroso Neto, J., Leite, M. L. M. V., & Teixeira, V. I. (2018). Estresse salino como desafio para produção de plantas forrageiras. Brazilian Journal of Applied Technology for Agricultural Science, 11(3), 127-139. http://dx.doi.org/10.5935/PAeT.V11.N3.13
Silva, J. R. I., Souza, R. M. S., Santos, W. A., Almeida, A. Q., Souza, E. S., & Antonino, A. C. D. (2017). Aplicação do método de Budyko para modelagem do balanço hídrico no semiárido brasileiro. Scientia Plena, 13(10), 109908. http://dx.doi.org/10.14808/sci.plena.2017.109908
Sinclair, T. R., Devi, J., Shekoofa, A., Choudhary, S., Sadok, W., Vadez, V., Riar, M., & Rufty, T. (2017). Limited-transpiration response to high vapor pressure deficit in crop species. Plant Science, 260, 109-118. https://doi.org/10.1016/j.plantsci.2017.04.007
Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment, 140(3-4), 339-353. https://doi.org/10.1016/j.agee.2011.01.017
Sotero, A. R. H., Karla, M., de Oliveira, T., & Batista, R. O. (2018). Bromatological analysis of millet cv. Ceará (Pennisetum glaucum) irrigated with treated gray water dilutions in well water. International Journal of Hydrology, 2(5), 637-641. https://doi.org/10.15406/ijh.2018.02.00136
Souza, M. S., Jardim, A. M. R. F., Araújo Júnior, G. N., Silva, J. R. I., Leite, M. L. M. V., Teixeira, V. I., & Silva, T. G. F. (2018). Ciclagem de nutrientes em ecossistemas de pastagens tropicais. PUBVET, 12(5), 1-9. https://doi.org/10.22256/pubvet.v12n5a91.1-9
Souza, M. S., Silva, T. G. F., Souza, L. S. B., Jardim, A. M. R. F., Araújo Júnior, G. N., & Alves, H. K. M. N. (2019). Practices for the improvement of the agricultural resilience of the forage production in semiarid environment: a review. Amazonian Journal of Plant Research, 3(4), 417-430. https://doi.org/10.26545/ajpr.2019.b00051x
Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3), 426-437. https://doi.org/10.2134/agronj2008.0139s
Steudle, E., & Peterson, C. A. (1998). How does water get through roots?. Journal of Experimental Botany, 49(322), 775-788. https://doi.org/10.1093/jxb/49.322.775
Superintendência do Desenvolvimento do Nordeste - SUDENE. Nova delimitação do Semiárido. 2017. Disponível em: <http://sudene.gov.br/images/arquivos/semiarido/ arquivos/Rela%C3%A7%C3%A3o_de_Munic%C3%ADpios_Semi%C3%A1rido.pdf>. Acessado em: 20 janeiro de 2019.
Taiz, L., & Zeiger, E. (2013). Fisiologia Vegetal. 5ed. Porto Alegre: Artmed, 2013.
Tharanya, M., Kholova, J., Sivasakthi, K., Seghal, D., Hash, C. T., Raj, B., Srivastava, R. K., Baddam, R., Thirunalasundari, T., Yadav, R., & Vadez, V. (2018). Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum L. R. Br.). Theoretical and Applied Genetics, 131(7), 1509-1529. https://doi.org/10.1007/s00122-018-3094-6
Unkovich, M., Baldock, J., & Farquharson, R. (2018). Field measurements of bare soil evaporation and crop transpiration, and transpiration efficiency, for rainfed grain crops in Australia – A review. Agricultural Water Management, 205, 72-80. https://doi.org/10.1016/j.agwat.2018.04.016
Uppal, R. K., Wani, S. P., Garg, K. K., & Alagarswamy, G. (2015). Balanced nutrition increases yield of pearl millet under drought. Field Crops Research, 177, 86-97. https://doi.org/10.1016/j.fcr.2015.03.006
Vimal, S. R., Singh, J. S., Arora, N. K., & Singh, S. (2017). Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere, 27(2), 177-192. https://doi.org/10.1016/S1002-0160(17)60309-6
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555-561. https://doi.org/10.1038/nature09440
Yawson, D. O., Mohan, S., Armah, F. A., Ball, T., Mulholland, B., Adu, M. O., & White, P. J. (2020). Virtual water flows under projected climate, land use and population change: the case of UK feed barley and meat. Heliyon, 6(1), e03127. https://doi.org/10.1016/j.heliyon.2019.e03127
Zhang, Y., Wang, R., Wang, H., Wang, S., Wang, X., & Li, J. (2019). Soil water use and crop yield increase under different long-term fertilization practices incorporated with two-year tillage rotations. Agricultural Water Management, 221, 362-370. https://doi.org/10.1016/j.agwat.2019.04.018
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.