Fósforo digestível de ingredientes para aves: metodologias e atualidades
DOI:
https://doi.org/10.33448/rsd-v9i7.4543Palavras-chave:
Digestibilidade; Método direto; Método de regressão; Método de substituiçãoResumo
O fósforo é o segundo mineral mais abundante nas aves, e o excesso ou a deficiência pode elevar à susceptibilidade a doenças do desenvolvimento ósseo. Na atualidade, nutricionistas têm buscado maneiras de atender precisamente as exigências dos animais, bem como de conhecer a disponibilidade nos ingredientes usados nas rações, objetivando o uso eficiente deste mineral. A digestibilidade pré-cecal foi proposta como a medida mais próxima do que seria o fósforo disponível para as aves. A metodologia utilizada foi a de revisão narrativa, com consulta a documentos publicados em diferentes bases de dados visando descrever e discutir as metodologias aplicadas para a determinação da digestibilidade pré-cecal de fósforo em ingredientes para aves. Os métodos comumente utilizados na determinação são o método direto, o método de regressão e o método de substituição. Cada método possui suas vantagens, desvantagens e limitações. No método direto e no método de substituição faz-se necessária a formulação de uma dieta isenta de fósforo para a determinação das perdas endógenas e posterior correção do valor aparente para o valor verdadeiro. No método de regressão a perda endógena é determinada pelo intercepto da equação linear gerada, sendo mais oneroso e laborioso, devido à necessidade de formulação de várias dietas para um único ingrediente. O conhecimento acerca dos valores de digestibilidade de fósforo em diferentes ingredientes tem grande importância na formulação de dietas avícolas, uma vez que permite estimar de forma mais precisa quanto do fósforo a ser utilizado tem potencial de ser absorvido pelo animal.
Referências
Abbasi, F., Liu, J., Zhang, H., Shen, X., & Luo, X. (2018). Effects of dietary total phosphorus concentration and casein supplementation on the determination of true phosphorus digestibility for broiler chickens. Italian Journal of Animal Science, 17, 135-144.
Adedokun, S. A., Adeola, O., Parsons, C. M., Lilburn, M. S., & Applegate, T. J. (2008) Standardized ileal amino acid digestibility of plant feedstuffs in broiler chickens and turkey poults using a nitrogen-free or casein diet. Poultry Science, 87(12), 2535-48.
Adedokun, S. A., Adeola, O., Parsons, C. M., Lilburn, M. S., & Applegate, T. J. (2011). Factors affecting endogenous amino acid flow in chickens and the need for consistency in methodology. Poultry Science, 90, 1737-1748.
Adeola, O. (2001). Digestion and balance techniques in pigs. A. J. Lewis, L. L. Southern (Eds.), Swine nutrition (2nd ed.), CRC Press.
Adeola, O., & Applegate, T. J. (2010). Phosphorus and calcium equivalency of phytase. In Proceedings of the 1st International Phytase Summit.
Akpe, M. P., Waibel, P. E., Larntz, E., Metz, A. L., Noll, S. L., & Walser, M. M. (1987). Phosphorus Availability Bioassay Using Bone Ash and Bone Densitometry as Response Criteria. Poultry Science, 66, 713-720.
Al-masri, M. R. (1995). Absorption and endogenous excretion of phosphorus in growing broiler chicks, as influenced by calcium and phosphorus ratios in feed. Britsh Journal of Nutrition, 74, 407-415.
Amerah, A. M., Plumstead, P. W., Barnard, L. P., & Kumar, A. (2014). Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poultry Science, 93, 906-915.
Ammerman, C. B., Baker, D. H., & Lewis, A. J. (1995). Bioavailability of Nutrients for Animals: Amino Acids, Minerals and Vitamins. Academic Press, San Diego, CA.
Angel, R. (2007). Metabolic Disorders: Limitations to Growth of and Mineral Deposition into the Broiler Skeleton after Hatch and Potential Implications for Leg Problems. Journal Applied Poultry Research, 16, 138–149.
Anwar, M. N., Ravindran, V., Morel, P. C. H., Ravindran, G., & Cowieson, A.J. (2018). Measurement of the true ileal calcium digestibility of some feed ingredients for broiler chickens. Animal Feed Science and Technology, 237, 118-128.
Biehl, R. R., & Baker, D. H. (1997). Utilization of phytate and nonphytate phosphorus in chicks as affected by source and amount of vitamin D3. Journal of Animal Science, 75, 2986-2993.
Bikker, P., Spek, J. W., Van Emous, R.A.; & Van Krimpen, M. M. (2016). Precaecal phosphorus digestibility of inorganic phosphate sources in male broilers. Britsh Poultry Science, 57, 810-817.
Bünzen, S. (2009). Digestibilidade do fósforo de alimentos e exigência de fósforo digestível de aves e suínos. Viçosa, MG: UFV. 129p. Tese (Doutorado em Nutrição de Monogástrico) - Universidade Federal de Viçosa.
Coates, B. J., Slinger, S. J., Summers, J. D., & Bayley, H. S. (1977). Metabolizable energy values and chemical and physical characteristics of wheat and barley. Canadian Journal Animal Science, 57, 195-207.
Centraal Veevoederbureau. (1997). Table on Feed Ingredients. Data on the Chemical Composition, Digestibility and Nutritional Value of Feedstuffs. Product Board Animal Feed.
Centraal Veevoederbureau. (2016). Table on Feed Ingredients. Data on the Chemical Composition, Digestibility and Nutritional Value of Feedstuffs. Product Board Animal Feed.
Coon, C. N., Seo, S., & Manangi, M. K. (2007). The determination of retainable phosphorus, relative biological availability, and relative biological value of phosphorus sources for broilers. Poultry Science, 86, 857-868.
Devereux, C., Smart, M., Kalt, F. P., & Takei, N. (1994) Animal feeds: Phosphate supplements. In CEH Marketing Research Report; HIS Chemical: Englewood, CO, USA.
Dilger, R. N., & Adeola, O. (2006). Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing chicks fed conventional and low-phytate soybean meals. Poultry Science, 85, 661-668.
Dinev, I. (2012). Clinical and morphological investigations on the incidence of forms of rickets and their association with other pathological states in broiler chickens. Research in Veterinary Science, 92(2), 273-277.
Edwards Jr, H. M. (1993). Dietary 1,25-dihydroxycholecalciferol supplementation increases natural phytate phosphorus utilization in chickens. The Journal of Nutrition, 123(3), 567-577.
Fan, M. Z., Archbold, T., Sauer, W. C., Lackeyram, D., Rideout, T., Gao, Y., de Lange, C.F.M., & Hacker, R. R. (2001). Novel methodology allows simultaneous measurement of true phosphorus digestibility and the gastrointestinal endogenous phosphorus outputs in studies with pigs. Journal of Nutrition, 131, 2388-2396.
Fan, M. Z., Shen, Y., Yin, Y. L., Wang, Z. R., Wang, Z. Y., Li, T. J., Rideout, T. C., Huang, R. L., Archbold, T., Yang, C. B., & Wang, J. (2008). Methodological considerations for measuring phosphorus utilization in pigs. In: France, J., Kebreab, E. (Eds.), Mathematical Modelling in animal Nutrition. CAB International, Oxfordshire, UK, pp. 370-397.
Fernandes, M. N. S. (2012). Principais problemas locomotores na avicultura industrial. PUBVET, 6(18), 1369.
Fundación Española para el Desarrollo de la Nutrición Animal. (2010). Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos. Fundación Española para el Desarrollo de la Nutrición Animal.
Han, J., Liu, Y., Yao, J., Wang, J., Qu, H., Yan, Y., Yue1, J., Ding, J., Shi1, Z., & Dong, X. (2012). Dietary calcium levels reduce the efficacy of one alphahydroxycholecalciferol in phosphorus-deficient diets of broilers. Journal of Poultry Science, 49, 34-38.
Han, J. C., Zhang, J. L., Zhang, N., Yang, X., Qu, H. X., Guo, Y., Shi, C. X., & Yan, X. F. (2018). Age, phosphorus, and 25-hydroxycholecalciferol regulate mRNA expression of vitamin D receptor and sodium-phosphate cotransporter in the small intestine of broiler chickens. Poultry Science, 97, 1199-1208.
Hemme, A., Spark, M., Wolf, P., Paschertz, H., & Kamphues, J. (2005). Effects of different phosphorus sources in the diet on bone composition and stability (breaking strength) in broilers. Journal of Animal Physiology and Animal Nutrition, 89, 129-133.
Hester, P. Y., Schreiweis, M. A., Orban, J. I., Mazzuco, H., Kopka, M.N., Ledur, M. C., & Moody, D. E. (2004). Assessing bone mineral density in vivo: dual energy X-ray absorptiometry. Poultry Science, 83, 215-221.
Institut National de la Recherché Agronomique. (2004). Tablas de composición y de valor nutritivo de las materias primas destinadas a los animales de interés ganadero. Mundiprensa.
Iyayi, E. A., Fru-Nji, F., & Adeola, O. (2013). True phosphorus digestibility of black-eyed pea and peanut flour without or with phytase supplementation in broiler chickens. Poultry Science, 92, 1595-1603.
Jongbloed, A. W., P. A. Kemme, G. De Groote, M. Lippens, & Meschy, F. (2002). Bioavailability of major and trace minerals. EMFEMA report. International Association of the European (EU) Manufacturers of Major, Trace and Specific Feed Mineral Materials.
Keshavarz, K. (1986). The effect of dietary levels of calcium and phosphorus on performance and retention of these nutrients by laying hens. Poultry Science, 65, 114–121.
Kupcikova, L., Lichovnikova, M., Anderle, V., Vlcko, T., Ohnoutkova, L., Svidrnoch, M., Maier, V., & Hampel, D. (2017). Pre-caecal digestible phosphorus in maize and wheat for broiler chickens. Britsh Poultry Science, 58, 712-717.
Lemme, A., Ravindran, V., & Bryden, W.L. (2004). Ileal digestibility of amino acids in feed ingredients for broilers. World's Poultry Science Journal, 60, 423-438.
Li, W., Angel, R., Kim, S. W., Brady, K., Yu, S., & Plumstead, P. W. (2016a). Impacts of dietary calcium, phytate, and nonphytate phosphorus concentrations in the presence or absence of phytase on inositol hexakisphosphate (IP6) degradation in different segments of broilers digestive tract. Poultry Science, 95, 581–589.
Li, X., Zhang, D., Yang, T.Y., & Bryden, W.L. (2016b). Phosphorus bioavailability: a key aspect for conserving this critical animal feed resource with reference to broiler nutrition. Agriculture, 6, 25.
Li, X., Zhang, D., & Bryden, W.L. (2017). Calcium and phosphorus metabolism and nutrition of poultry: are current diets formulated in excess?. Animal Production Science, 57, 2304–2310.
Lima, F. R., Mendonça Júnior, C. X., Alvarez, J. C., Garzillo, J. M., Ghion, E., & Leal, P. M. (1997). Biological evaluations of commercial dicalcium phosphates as sources of available phosphorus for broiler chicks. Poultry Science, 76(12), 1707-1713.
Liu, J. B., Chen, D. W., & Adeola, O. (2014). Casein supplementation does not affect true phosphorus digestibility and endogenous phosphorus loss associated with soybean meal for broiler chickens determined by the regression method. Canadian Journal Animal Science, 94, 661-668.
Mutucumarana, R. K., Ravindran, V., Ravindran, G., & Cowieson, A. J. 2014a. Measurement of true ileal digestibility and total tract retention of phosphorus in corn and canola meal for broiler chickens. Poultry Science, 93, 412-419.
Mutucumarana, R. K., Ravindran, V., Ravindran, G., & Cowieson, A. J. (2014b). Measurement of true ileal digestibility of phosphorus in some feed ingredients for broiler chickens. Journal Animal Science, 92, 5520–5529.
Mutucumarana, R. K., Ravindran, V., Ravindran, G., & Cowieson, A.J. (2015a). Measurement of true ileal phosphorus digestibility in meat and bone meal for broiler chickens. Poultry Science, 94, 1611-1618.
Mutucumarana, R. K., Ravindran, V., Ravindran, G., & Cowieson, A. J. (2015b). Measurement of true ileal phosphorus digestibility in maize and soybean meal for broiler chickens: Comparison of two methodologies. Animal Feed Science and Technology, 206, 76-86.
Mutucumarana, R. K. & Ravindran, V. (2016). Measurement of true ileal phosphorus digestibility in meat and bone meal for broiler chickens using the direct method. Animal Feed Science and Technology, 219, 249-256.
National Research Council. (1994). Nutrient requirements of poultry. (9th ed.) National Academy Press.
Neset, T. S. & Cordell, D. (2012). Global phosphorus scarcity: Identifying synergies for a sustainable future. Journal of the Science of Food and Agriculture, 92, 2–6.
Olukosi, O. A., Bolarinwa, O. A., Cowieson, A. J., & Adeola O. (2012). Marker type but not concentration influenced apparent ileal amino acid digestibility in phytase-supplemented diets for broiler chickens and pigs. Journal Animal Science, 90(12), 4414-4420.
Olukosi, O. A., Adedokun, S. A., & Agboola, J. O. (2017). Species-dependent response to the influence of adaptation length during assay for metabolisable energy of cereal grains employing the difference method. Animal Feed Science and Technology, 231, 111-118.
Onyango, E. M., Hester, P. Y., Stroshine, R. & Adeola, O. (2003). Bone densitometry as an indicator of percentage tibia ash in broiler chicks fed varying dietary calcium and phosphorus levels. Poultry Science, 82(11), 1787-1791.
Pekel, A. Y., Adedokun, S. A., & Adeola, O. (2017). True phosphorus digestibility of camelina meal in broiler chickens. Canadian Journal of Animal Science, 98, 194-203.
Penido, M. G. M. G. & Alon, U.S. (2012). Phosphate homeostasis and its role in bone health. Pediatr Nephrol., 27(11), 2039-2048.
Pereira, L. F. P. & Adeola, O. (2016). Energy and phosphorus values of sunflower meal and rice bran for broiler chickens using the regression method. Poultry Science, 95, 2081-2089.
Perryman, K. R., Masey O’Neill, H. V., Bedford, M. R., & Dozier, III, W. A. (2016). Effects of calcium feeding strategy on true ileal phosphorus digestibility and true phosphorus retention determined with growing broilers. Poultry Science, 95, 1077–1087.
Perryman, K. R., Masey O’Neill, H. V., Bedford, M. R., & Dozier, III, W. A. (2017). Methodology affects measures of phosphorus availability in growing broilers: Effects of calcium feeding strategy and dietary adaptation period length on true ileal phosphorus digestibility and predicted endogenous phosphorus losses. Poultry Science, 96, 611-621.
Plumstead, P. W., Leytem, A. B., Maguire, R. O., Spears, J. W., Kwanyuen, P., & Brake, J. (2008). Interaction of calcium and phytate in broiler diets. 1. Effects on apparent prececal digestibility and retention of phosphorus. Poultry Science, 87, 449-458.
Potter, L. M., Potchanakorn, M., Ravindranm, V., & Kornegay, E. T. (1995). Bioavailability of phosphorus in various phosphate sources using body weight and toe ash as response criteria. Poultry Science, 74(5), 813-20.
Ravindran, V., Adeola, O., Rodehutscord, M., Kluth, H., van der Klis, J.D., van Eerden, E. & Helmbrecht, A. (2017). Determination of ileal digestibility of amino acids in raw materials for broiler chickens – Results of collaborative studies and assay recommendations. Animal Feed Science and Technology, 225, 62-72.
Rodehutscord, M., Adeola, O., Angel, R., Bikker, P., Delezie, E., Dozier, W.A., Umar Faruk, M., Francesch, M., Kwakernaak, C., Narcy, A., Nyachoti, C.M., Olukosi, O.A., Preynat, A., Renouf, B., Saiz Del Barrio, A., Schedle, K., Siegert, W., Steenfeldt, S., van Krimpen, M.M., Waititu, S.M., & Witzig, M. (2017). Results of an international phosphorus digestibility ring test with broiler chickens. Poultry Science, 96, 1679-1687.
Rostagno, H. S., Albino, L. F. T., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., Saraiva, A., Teixeira, M. L., Rodrigues, P. B., Oliveira, R. F., Barreto, S. L. T., & Brito, C. O. (2005). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais (2a ed.). Universidade Federal de Viçosa.
Rostagno, H. S., Albino, L. F. T., Donzele, J. L., Gomes, P. C., Oliveira, R. F., Lopes, D. C., Ferreira, A. S., & Barreto, S. L. T. (2011) Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais (3a ed.). Universidade Federal de Viçosa.
Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., Saraiva, A., Teixeira, M. V., Rodrigues, P. B., Oliveira, R. F., Barreto, S. L. T., & Brito, C. O. (2017). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais (4a ed). Universidade Federal de Viçosa.
Sakomura, N. K. & Rostagno, H. S. (2016). Métodos de Pesquisa em Nutrição de Monogástricos (2a ed.). FUNEP.
Sales, J., & Janssens, G. P. J. (2003). Acid-insoluble ash as a marker in digestibility studies: a review. Journal Animal Feed Science, 12(3), 383-401.
Selle, P. H., Cowieson, A. J., & Ravindran, V. (2009). Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock Science, 124, 126-141.
Sharpley, A. N., Chapra, S. C., Wedepohl, R., Sims, J. T., Daniel, T. C., & Reddy, K. R. (1994). Managing agricultural phosphorus for protection of surface waters: Issues and options. Journal Environmental Quality, 23, 437-451.
Shastak, Y., Witzig, M.; Hartung, K. & Rodehutscord, M. (2012). Comparison of retention and prececal digestibility measurements in evaluating mineral phosphorus sources in broilers. Poultry Science, 91, 2201–2209.
Shastak, Y., & Rodehutscord, M. (2013). Determination and estimation of phosphorus availability in growing poultry and their historical development. World's Poultry Science Journal, 69, 569-585.
Silva, E. P., Rabello, C. B., Lima, M. B., Lima, S. B. P., Lima, R. B., & Lima, T. S. (2011). Age effect on the endogenous and metabolic losses in industrial and free-range broiler chickens. Ciência Animal Brasileira, 12, 37-47.
Tamim, N. M., Angel, R. & Christman, M. (2004). Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poultry Science, 83, 1358-1367.
Van der Klis, J. D. & Versteegh, H. A. J. (1999). Phosphorus nutrition of poultry. In: Recent Developments in Poultry Nutrition 2; Garnsworthy, P.C., Wiseman, J., Eds. Nottingham University Press.
Van Harn, J., Spek, J.W., Van Vuure, C.A. & Van Krimpen, M. M. (2017). Determination of pre-cecal phosphorus digestibility of inorganic phosphates and bone meal products in broilers. Poultry Science, 96, 1334-1340.
Vosgerau, D. S. R. & Romanowski, J. P. (2014) Estudos de revisão: implicações conceituais e metodológicas. Rev. Diálogo Educ., 14(41),165-189.
Witzig, M., Ingelmann, C. J., Möhring, J. & Rodehutscord, M. (2018). Variability of prececal phosphorus digestibility of triticale and wheat in broiler chickens. Poultry Science, 97, 910–919.
World Poultry Science Association. (2013). Determination of phosphorus availability in poultry. World's Poultry Science Journal, 69, 687-698.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.