Caracterização de nanopartículas de prata e avaliação do seu efeito antimicrobiano sobre Salmonella

Autores

DOI:

https://doi.org/10.33448/rsd-v9i9.6435

Palavras-chave:

Nanopartículas de prata; Antimicrobianos; Indústria de alimentos.

Resumo

Atualmente o sucesso da nanotecnologia atinge várias áreas da ciência, medicina, da tecnologia e, principalmente, do setor alimentício. As nanopartículas de prata (Ag-NPs) ganham destaque com seu efeito antimicrobiano que além de altamente tóxicas à celulas bacterianas, são facilmente sintetizadas e caracterizadas. O gênero Salmonella é o segundo maior causador de doenças e já existem relatos de sorotipos altamente resistentes. Assim, o uso de Ag-NPs é uma alternativa para controle bacteriano em alimentos. O objetivo deste estudo foi sintetizar, caracterizar e verificar a atividade antimicrobiana de Ag-NPs sobre sorotipos de Salmonella. O tamanho das Ag-NPs foi estimado e foi possível detectar duas populações de 4,7 ± 0,09 e 35,7 ± 2,12. O potencial zeta foi de -33,7 ± 11,8 mV, indicando boa estabilidade da dispersão. A atividade antimicrobiana das Ag-NP foi determinada a partir da concentração inibitória mínima (CIM). A CIM mais baixa encontrada foi de 4,7 μg • mL-1 para Salmonella Enteritidis e a maior foi de 27,7 μg • mL-1 para o isolado de Salmonella Infantis 1. O uso de Ag-NPs é promissor em relação à atividade antimicrobiana, no entanto, melhorias nos métodos de síntese devem ser exploradas para viabilizar o uso comercial.

Referências

Agnihotri, S., Mukherji, S., Mukherji, S. (2013). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Royal Society of Chemistry, 4, 3974-3983. https://doi10.1039/C3RA44507K

Ardani, H.K., Imawan, C., Handayani, W., Djuhana, D., Harmoko, A., Fauzia, V. (2017). Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 188, 12056. https://doi:10.1088/1757-899X/188/1/012056

Baker, C.; Pradhan, A.; Pakstis, L.; Pochan, D.J.; Shah, S.I. (2005). Synthesis and antibacterial properties of silver nanoparticles. Journal Nanoscience and Nanotechnology, 5, 244–249. https://doi.org/10.1166/jnn.2005.034

Bhattacharjee, S. DLS and zeta potential–What they are and what they are not?. Journal of Controlled Release, 235, p. 337-351, 2016. https://doi.org/10.1016/j.jconrel.2016.06.017

CDC. Centers for Disease Control and Prevention (2018). Reports of Selected Salmonella Outbreak Investigations, Salmonella Factsheet. Available at: https://www.cdc.gov/salmonella/pdf/CDC-Salmonella-Factsheet.pdf. Acessed on July 14, 2020.

CLSI . Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard . Ninth Edition. User Manual M07-A9, 32, n 2, p. 16 – 37, 2012.

Devi, G.K.; Kumar, K.S.; Parthiban, R.; Kalishwarlal, K. (2017). An insight study on HPTLC fingerprinting of Mukia maderaspatna: Mechanism of bioactive constituents in metal nanoparticle synthesis and its activity against human pathogens. Microbial pathogenesis, 102, 120-132. https://doi.org/10.1016/j.micpath.2016.11.026

FDA. Food and Drug Administration. (2015). Environmental Decision Memo for Food Contact Notification No. 1569, 2015. Available at: http://www.fda.gov/Food/IngredientsPackagingLabeling/EnvironmentalDecisions/ucm488455.htm. Acessed on July 14, 2020.

Flores, C.Y., Minan, A.G., Grillo, C.A., Salvarezza, R.C., Vericat, C., Schilardi, P.L. (2013). Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblasticcells, ACS Applied Materials & Interfaces, 5, 3149–3159. https://doi.org/10.1021/am400044e

Guzman, M., Dille, J., Godet, S. (2012). Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 8, 37-45. https://doi.org/10.1016/j.nano.2011.05.007

Losasso, C., Belluco, S., Cibin, V., Zavagnin, P., Micetic, I., Gallocchio, F., Zanella, M., Bregoli, L., Biancotto, G., RiccI, A. (2014) Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Frontiers in microbiology, 5. https://doi.org/10.3389/fmicb.2014.00227

Madigan M.T, Martinko J.M., Bender K.S., Buckley D.H., Stahl D.A. (2015) Brock Biology of Microorganisms. Glenview – IL: Pearson education. 1041.

Malvern Instruments Ltd. (2013) Zeta Potential Theory. Zetasizer Nano Series UserManual Man0485. Available at: https://www.chem.uci.edu/~dmitryf/manuals/Malvern%20Zetasizer%20ZS%20DLS%20user%20manual.pdf. Acessed on July 14, 2020.

Martínez-Castañón, G.A., Niño-Martínez, N., Martínez-Gutierrez, F. (2008). Martínez-Mendoza, J.R., Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10, 1343-1348. https://doi.org/10.1007/s11051-008-9428-6.

Morones, J., Elechiguerra, J., Camacho, A., Ramirez, J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology , 16, 2346–53.

Nobbmann, U. (2015). Malvern Panalytical. Material Talks. PDI from an individual peak in DLS. Available at: < http://www.materials-talks.com/blog/2015/03/31/pdi-from-an-individual-peak-in-dls/>. Acessed on July 14, 2020.

Nobbmann, U., Morfesis, A. (2009). Light scattering and nanoparticles. Materials today, 12, 52-54. https://doi.org/10.1016/S1369-7021(09)70164-6

Omara, S.T.; Zawrah, M.F.; Samy, A.A. (2017). Minimum bactericidal concentration of chemically synthesized silver nanoparticles against pathogenic Salmonella and Shigella strains isolated from layer poultry farms. Journal of Applied Pharmaceutical Science, 7, 214-221. https://doi:10.7324/JAPS.2017.70829

Padmos, J.D., Boudreau, R., Weaver, D.F., Zhang, P. (2015). Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Langmuir, 31, 3745-3752. https://doi.org/10.1021/acs.langmuir.5b00049

Panacék, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Virender, K., Nevecna, T., Zboril, R. (2006). Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110, 16248–53. https://doi.org/10.1021/jp063826h

Peng, D. (2016). Biofilm Formation of Salmonella. In: Dhanasekaran, D., Thajuddin. Microbial Biofilms – Importance and Applications. Intech open science, p. 231-249.

Pereira AS et al (2018). Methodology of cientific research. [e-Book]. Santa Maria City. UAB / NTE / UFSM Editors. Available at: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acessed on July 14, 2020.

Perkin Elmer. The 30-Minute Guide to ICP-MS - ICP-Mass Spectrometry. Available at: https://www.perkinelmer.com/CMSResources/Images/44-74849tch_icpmsthirtyminuteguide.pdf. Acessed on July 17, 2020.

Pinzaru, I., Coricovac, D., Dehelean, C., Moacă, E.A., Mioc, M., Baderca, F., Sizemore, I., Brittle, S., Marti, D., Calina, C.D., Tsatsakis, A.M., Soica, C. (2018). Stable PEG-coated silver nanoparticles–A comprehensive toxicological profile. Food and Chemical Toxicology, 111, 546-556. https://doi.org/10.1016/j.fct.2017.11.051

Prema P., Thangapandiyan, S., Immanuel, G. (2017). CMC stabilized nano silver synthesis, characterization and its antibacterial and synergistic effect with broad spectrum antibiotics. Carbohydrate polymers, 158, 141-148. https://doi.org/10.1016/j.carbpol.2016.11.083

Pui, C.F., Wong, W.C., Chai, L.C., Lee, H.Y., Tang, J.Y.H., Noorlis, A., Farinazleen, M.G., CHEAH, Y.K., SON, R. (2011). Biofilm formation by Salmonella Typhi and Salmonella Typhimurium on plastic cutting board and its transfer to dragon fruit. International Food Research Journal, 18, 31-38.

Raman, G., Park, S.J., SakthiveL, N., Suresh, A.K. (2017). Physico-cultural parameters during AgNPs biotransformation with bactericidal activity against human pathogens. Enzyme and Microbial Technology, 100, 45-51. https://doi.org/10.1016/j.enzmictec.2017.02.002

Rogers, K.R., Navratilova, J., Stefaniak, A., Bowers, L., Knepp, A. K., Al-abed, S.R., Potter, P., Gitipour, A., Radwan, I., Nelson, C., Bradham, K.D. (2018). Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver. Science of The Total Environment, 619, 1375-1384. https://doi.org/10.1016/j.scitotenv.2017.11.195

Sadowski, Z., Maliszewska, I.H., Grochowalska, B., Polowczyk, I., Koźlecki, T. (2008). Synthesis of silver nanoparticles using microorganisms. Material Science-Poland, 26, 2- 6.

Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C. (2007). Synthesis and study of silver nanoparticles. Journal of Chemical Education, 84, 322. https://doi.org/10.1021/ed084p322

Sosa, I.O., Noguez, C., Barrera, R.G. (2003). Optical properties of metal nanoparticles with arbitrary shapes. The Journal of Physical Chemistry B, 107, 6269-6275. https://doi.org/10.1021/jp0274076

Sotiriou, G.A., Meyer, A., Knijnenburg, J.T.N., Panke, S., Pratsinis, S.E. (2012). Quantifying the origin of released Ag+ ions from nanosilver. Langmuir, 28, 15929-15936. https://doi.org/10.1021/la303370d

Steenackers, H., Hermans, K., Vanderleyden, J., Keersmaecker, S.C.J.D. (2012). Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Research International, 45, 502-531.

Surmeneva, M.A., Sharonova, A.A., Chernousova, S., Prymak, O., Loza, K., Tkachev, M.S., Shulepov, I.A., Epple, M., Surmenev, R.A. (2017). Incorporation of silver nanoparticles into magnetron-sputtered calcium phosphate layers on titanium as an antibacterial coating. Colloids and Surfaces B: Biointerfaces, 156, 104-113. https://doi.org/10.1016/j.colsurfb.2017.05.016

Turkevich, J., Stevenson, P.C., Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, v. 11, p. 55-75, 1951.

Wagner, C., Hensel, M. Adhesive Mechanisms of Salmonella enterica. (2011). In: LInke, D.; Goldman, A. Bacterial Adhesion, Advances in Experimental Medicine and Biology. Germany. Springer Science Business, 17-34.

Williams, K., Valencia, L., Gokulan, K., Trbojevich, R., Khare, S. (2017). Assessment of antimicrobial effects of food contact materials containing silver on growth of Salmonella Typhimurium. Food and Chemical Toxicology, 100, 197-206. https://doi.org/10.1016/j.fct.2016.12.014

Wolf, R.E. (2005). What is ICP-MS? Available at: <https://crustal.usgs.gov/laboratories/icpms/What_is_ICPMS.pdf>. Acessed on July 14, 2020.

Zarei, M., Jamnejad, A., Khajehali, E. (2014). Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur Journal of Microbiology, 7. https://doi: 10.5812/jjm.8720

Zhang, H., Chen, G. (2009). Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol gel method. Environmental Science & Technology, 43, 2905-2910. https://doi.org/10.1021/es803450f

Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. (2011). Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environmental Science & Technology, 45, 4422-4428. https://doi.org/10.1021/es104205a

Downloads

Publicado

13/08/2020

Como Citar

SOUZA, L. V.; LEAL, D. A.; COSTA, T. R. da; MENDONÇA, R. C. S. Caracterização de nanopartículas de prata e avaliação do seu efeito antimicrobiano sobre Salmonella. Research, Society and Development, [S. l.], v. 9, n. 9, p. e103996435, 2020. DOI: 10.33448/rsd-v9i9.6435. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6435. Acesso em: 3 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas