Avaliação da eficácia de biocidas na remoção de biofilmes produzidos por Pseudomonas aeruginosa multidroga resistentes

Autores

DOI:

https://doi.org/10.33448/rsd-v9i9.6975

Palavras-chave:

Pseudomonas aeruginosa; Biofilmes; Biocidas; Desinfecção; Carbapenêmicos.

Resumo

Pseudomonas aeruginosa é um dos patógenos mais frequentes em infecções acometendo pacientes queimados, tendo como importante determinante de patogenicidade sua capacidade de formar biofilmes. O presente trabalho tem por objetivo avaliar a eficácia das soluções biocidas: clorexidina 4%, hipoclorito de sódio 1%, peróxido de hidrogênio 5% e álcool 70% na remoção de biofilmes de P. aeruginosa multidroga resistentes. Trata-se de um estudo descritivo de abordagem quantitativa. Foram avaliados biofilmes de nove cepas de P. aeruginosa, de diferentes tipos clonais, sendo oito resistentes a carbapenêmicos e uma sensível, coletadas de pacientes queimados e mesas de balneoterapia. As cepas estudas foram cultivadas juntamente com cupons de aço inoxidável, e incubadas por 24 h. Posteriormente, os cupons foram tratados com e sem biocidas, nos tempos de contato de 15, 5 e 0 minutos. A remoção do biofilme foi avaliada através da contagem de células viáveis obtidas dos cupons com e sem tratamento.  A concentração mínima inibitória ao imipenem e meropenem foi determinada para cepas avaliadas através do método epsilométrico. Foi observado formação de biofilme em todos os cupons não tratados com biocidas. Entretanto, não houve contagem de células viáveis após contato do biofilme com todas soluções biocidas, nos tempos estudados. A concentração mínima inibitória aos carbapenêmicos variou entre 16 a ≥ 32µg/mL. Concluiu-se que todas a soluções desinfetantes avaliadas, foram eficazes na remoção de biofilmes produzidos pelas cepas de P. aeruginosa estudadas.

Referências

Abdallah, M., Benoliel, C., Drider, D., Dhulster, P., & Chihib, N. E. (2014). Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch Microbiol, 196(7), 453-472.

Albayrak, Y., Temiz, A., Albayrak, A., Peksöz, R., Albayrak, F., & Tanrıkulu, Y. (2018). A retrospective analysis of 2713 hospitalized burn patients in a burns center in Turkey. Ulus Travma Acil Cerrahi Derg, 24(1), 25-30.

Attinger, C., & Wolcott, R. (2012). Clinically Addressing Biofilm in Chronic Wounds. Adv Wound Care (New Rochelle), 1(3), 127-132.

Banu, A., Mathew, P., Manasa, S., & Shetty, A. B. (2017). Bacteriological profile of burn wound infections with reference to biofilm formation. J Bacteriol Mycol Open Access, 4(4), 127-129.

Bonez, P. C., Dos Santos Alves, C. F., Dalmolin, T. V., Agertt, V. A., Mizdal, C. R., Flores, V. C., Marques, J. B., Santos, R. C. V., & Anraku de Campos, M. M. (2013). Chlorhexidine activity against bacterial biofilms. Am J Infect Control, 41(12), e119-122.

Cerf, O., Carpentier, B., & Sanders, P. (2010). Tests for determining in-use concentrations of antibiotics and disinfectants are based on entirely different concepts: "resistance" has different meanings. Int J Food Microbiol, 136(3), 247-254.

Clinical and Laboratory Standards Institute (2018). Performance standards for antimicrobial susceptibility testing, (28th ed.), CLSI, Wayne, P.A.

Costerton, J. W. (1999). Introduction to biofilm. Int J Antimicrob Agents, 11(3-4), 217-221; discussion 237-219.

de Almeida Silva, K. C., Calomino, M. A., Deutsch, G., de Castilho, S. R., de Paula, G. R., Esper, L. M., & Teixeira, L. A. (2017). Molecular characterization of multidrug-resistant (MDR) Pseudomonas aeruginosa isolated in a burn center. Burns, 43(1), 137-143.

Deutsch, G., Bokehi, L. C., Silva, A. E. G. P. R., Guimarães Junior, L. M., Rodrigues, R., Esper, L. M. R., Gonzalez, A. G. M., Paula, G. R., Castilho, S. R., & Teixeira, L. A. (2016). Balneotherapy is a potential risk factor for pseudomonas aeruginosa colonization. Braz J Pharm Sci, 52(1), 125-132.

Djuric, O., Markovic-Denic, L., Jovanovic, B., & Bumbasirevic, V. (2019). High incidence of multiresistant bacterial isolates from bloodstream infections in trauma emergency department and intensive care unit in Serbia. Acta Microbiol Immunol Hung, 66(3), 307-325.

Flemming, H. C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: the "house of biofilm cells". J Bacteriol, 189(22), 7945-7947.

Ghanbarzadeh Corehtash, Z., Khorshidi, A., Firoozeh, F., Akbari, H., & Mahmoudi Aznaveh, A. (2015). Biofilm Formation and Virulence Factors Among Pseudomonas aeruginosa Isolated From Burn Patients. Jundishapur J Microbiol, 8(10), e22345.

Gilbert, P., Allison, D. G., & McBain, A. J. (2002). Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol, 92 Suppl, 98S-110S.

Glik, J., Łabuś, W., Kitala, D., Mikuś-Zagórska, K., Roberts, C. D., Nowak, M., Kasperczyk, A., & Kawecki, M. (2018). A 2000 patient retrospective assessment of a new strategy for burn wound management in view of infection prevention and treatment. Int Wound J, 15(3), 344-349.

Hajská, M., Slobodníková, L., Hupková, H., & Koller, J. (2014). In vitro efficacy of various topical antimicrobial agents in different time periods from contamination to application against 6 multidrug-resistant bacterial strains isolated from burn patients. Burns, 40(4), 713-718.

Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents, 35(4), 322-332.

Jabalameli, F., Mirsalehian, A., Khoramian, B., Aligholi, M., Khoramrooz, S. S., Asadollahi, P., Taherikalani, M., & Emaneini, M. (2012). Evaluation of biofilm production and characterization of genes encoding type III secretion system among Pseudomonas aeruginosa isolated from burn patients. Burns, 38(8), 1192-1197.

Kao, C. Y., Chen, S. S., Hung, K. H., Wu, H. M., Hsueh, P. R., Yan, J. J., & Wu, J. J. (2016). Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan. BMC Microbiol, 16(1), 107.

Kowalske, K. J. (2011). Burn wound care. Phys Med Rehabil Clin N Am, 22(2), 213-227.

Malone, M., Bjarnsholt, T., McBain, A. J., James, G. A., Stoodley, P., Leaper, D., Tachi, M., Schultz, G., Swanson, T., & Wolcott, R. D. (2017). The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care, 26(1), 20-25.

Marino, M., Frigo, F., Bartolomeoli, I., & Maifreni, M. (2011). Safety-related properties of staphylococci isolated from food and food environments. J Appl Microbiol, 110(2), 550-561.

McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev, 12(1), 147-179.

Meletis, G. (2016). Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis, 3(1), 15-21.

Miyaue, S., Suzuki, E., Komiyama, Y., Kondo, Y., Morikawa, M., & Maeda, S. (2018). Bacterial Memory of Persisters: Bacterial Persister Cells Can Retain Their Phenotype for Days or Weeks After Withdrawal From Colony-Biofilm Culture. Front Microbiol, 9, 1396.

Nunez Lopez, O., Cambiaso-Daniel, J., Branski, L. K., Norbury, W. B., & Herndon, D. N. (2017). Predicting and managing sepsis in burn patients: current perspectives. Ther Clin Risk Manag, 13, 1107-1117.

Parizzi, S. Q. F., Andrade, N. J. d., Silva, C. A. d. S., Soares, N. d. F. F., & Silva, E. A. M. d. (2004). Bacterial adherence to different inert surfaces evaluated by epifluorescence microscopy and plate count method. Braz Arch Biol Technol, 47(1), 77-83.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Ramos-Gallardo, G. (2016). Chronic Wounds in Burn Injury: A Case Report on Importance of Biofilms. World J Plast Surg, 5(2), 175-180.

Schultz, L., Walker, S. A., Elligsen, M., Walker, S. E., Simor, A., Mubareka, S., & Daneman, N. (2013). Identification of predictors of early infection in acute burn patients. Burns, 39(7), 1355-1366.

Singh, G., Wu, B., Baek, M. S., Camargo, A., Nguyen, A., Slusher, N. A., Srinivasan, R., Wiener-Kronish, J. P., & Lynch, S. V. (2010). Secretion of Pseudomonas aeruginosa type III cytotoxins is dependent on pseudomonas quinolone signal concentration. Microb Pathog, 49(4), 196-203.

Surdeau, N., Laurent-Maquin, D., Bouthors, S., & Gellé, M. P. (2006). Sensitivity of bacterial biofilms and planktonic cells to a new antimicrobial agent, Oxsil 320N. J Hosp Infect, 62(4), 487-493.

Toté, K., Horemans, T., Vanden Berghe, D., Maes, L., & Cos, P. (2010). Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol, 76(10), 3135-3142.

Varkey, M., Visscher, D. O., van Zuijlen, P. P. M., Atala, A., & Yoo, J. J. (2019). Skin bioprinting: the future of burn wound reconstruction? Burns & Trauma, 7, s41038-019-0142-7.

Waters, E. M., Rowe, S. E., O'Gara, J. P., & Conlon, B. P. (2016). Convergence of Staphylococcus aureus Persister and Biofilm Research: Can Biofilms Be Defined as Communities of Adherent Persister Cells? PLoS Pathog, 12(12), e1006012.

Wolcott, R., & Dowd, S. (2011). The role of biofilms: are we hitting the right target? Plast Reconstr Surg, 127 Suppl 1, 28S-35S.

Downloads

Publicado

13/08/2020

Como Citar

SILVA, K. de C. F. de A.; CALOMINO, M. A.; DEUTSCH, G.; PIRES, B. M. F. B.; ESPER, L. M. R. .; PAULA, G. R. de; TEIXEIRA, L. A. Avaliação da eficácia de biocidas na remoção de biofilmes produzidos por Pseudomonas aeruginosa multidroga resistentes. Research, Society and Development, [S. l.], v. 9, n. 9, p. e83996975, 2020. DOI: 10.33448/rsd-v9i9.6975. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6975. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde