Aplicação do modelo AMMI-bayesiano no estudo de estabilidade e adaptabilidade genotípica em dados de mostarda
DOI:
https://doi.org/10.33448/rsd-v9i9.7023Palavras-chave:
Interação; Regiões de credibilidade; Biplot.Resumo
A análise de conjuntos de dados provenientes de ensaios multiambientais é de fundamental importância nas fases finais dos programas de melhoramento de plantas. Nesse contexto, o Modelo de Efeitos Principais Aditivos e Interação Multiplicativa (AMMI) se tornou um método popular para avaliar respostas de genótipos em diversos ambientes. No presente trabalho aplicou-se o modelo AMMI, sob o enfoque bayesiano, a um conjunto de dados provenientes de um experimento em blocos casualizados com 12 genótipos (variedades) de mostarda em 6 ambientes distintos. O objetivo foi analisar estabilidade e adaptabilidade genotípica por meio da representação biplot AMMI-2, ressaltando diferenças dessa abordagem em relação a análise AMMI-clássica. Os resultados evidenciaram a grande flexibilidade do método bayesiano para incorporar efeito aleatório para genótipos, bem como inferência ao biplot por meio de regiões de credibilidade para escores genotípicos e ambientais que descrevem o efeito da interação genótipos por ambientes (GEI). As regiões de credibilidade construídas para efeitos principais e parâmetros bilineares permitiram identificar genótipos mais produtivos e visualizar subgrupos homogêneos de genótipos e ambientes em relação ao efeito da GEI. Os genótipos mais produtivos foram G8 e G10 e apenas o G2 foi considerado estatisticamente estável.
Referências
Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis. New York: John Wiley.
Chen, M. H., & Shao, Q. M. (1999). Monte Carlo estimation of bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics, 8(1), 69-92.
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J. M., Viele, K; Liu, G., & Cornelius, P. L. (2011). Bayesian estimation of the additive main effects and multiplicative interaction model. Crop Science, 51(4), 1458-1469. https://doi.org/10.2135/cropsci2010.06.0343
Denis, J. B., & Gower, J. C. (1994). Asymptotic covariances for parameters of biadditive models. Utilitas Mathematica, v. 46, 193-205.
Duarte, J. B., & Vencovsky, R. (1999). Interação genótipos × ambientes: uma introdução à análise “AMMI”. Ribeirão Preto: Sociedade Brasileira de Genética.
Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal components analysis. Biometrika, 58(3), 453-467.
Heidelberger, P., & Welch, P. (1983). Simulation run length control in the presence of an initial transient. Operations Research, 31(6), 1109-1144.https://doi.org/10.1287/opre.31.6.1109
Indian Agricultural Statistics Research Institute. IASRI. (2014). Recuperado de http://www.iasri.res.in/design/Analysis%20of%20data/combined_anlysis_rcbd.html
Jarquin, D., Perez-Elizalde, S., Burgueño, J., & Crossa, J. (2016). A hierarchical Bayesian estimation model for multi-environment plant breeding trials in successive years. Crop Science, 56(5), 2260-2276. https://doi.org/10.2135/cropsci2015.08.0475
Júnior, L. A. Y. B., Silva, C. P., Oliveira, L. A., Nuvunga, J. J., Pires, L. P. M., Pinho, R. G. V., & Balestre, M. (2018). AMMI Bayesian Models to Study Stability and Adaptability in Maize. Agronomy Journal, 110(5), 1765-1776. https://doi.org/10.2134/agronj2017.11.0668
Kempton, R. A. (1984). The use of biplots in interpreting variety by environment interactions. Journal of Agricultural Science, 103(1), 123-135. https://doi.org/10.1017/S0021859 600043392
Liu, G. (2001). Bayesian computations for general linear-bilinear models. (Thesis, University of Kentucky).
Oliveira, L. A., Silva, C. P., Nuvunga, J. J., Silva, A. Q., & Balestre, M. (2015). Credible intervals for scores in the AMMI with random effects for genotype. Crop Science, 55(2), 465-476. https://doi.org/10.2135/cropsci2014.05.0369
Oliveira, L. A., Silva, C. P., Teodoro, P. E., Torres, F. E., Corrêa, A. M., & Bhering, L. L. (2017). Performance of Cowpea Genotypes in the Brazilian Midwest Using the Bayesian Additive Main Effects and Multiplicative Interaction Model. Agronomy Journal, 110(1), 147-154. https://doi.org/10.2134/agronj2017.03.0183
Ooms, J. C. L. (2009). The highest posterior density posterior prior for Bayesian model selection. (Master's thesis). https://dspace.library.uu.nl/handle/1874/34234
Perez-Elizalde, S., Jarquin, D., & Crossa, J. (2012). A general Bayesian estimation method of linear–bilinear models applied to plant breeding trials with genotype× environment interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17(1), 15-37. https://doi.org/10.1007/s13253-011-0063-9
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Raftery, A. E., & Lewis, S. (1992). How many iterations in the Gibbs sampler? In: Bernardo, J. M. et al. (Ed.), Bayesian statistics, 763-773. Oxford: Oxford University.
Resende, M. D. V., & Duarte, J. B. (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 37(3), 182-194. Recuperado de https://www.revistas.ufg.br/pat/article/view/1867.
Silva, C. P., Oliveira, L. A., Nuvunga, J. J., Pamplona, A. K. A., & Balestre, M. (2015). A Bayesian Shrinkage approach for AMMI Models. PLoS One, 10(7), 1-27. https://doi.org/10.1371/journal.pone.0131414
Silva, C. P., Oliveira, L. A., Nuvunga, J. J., Pamplona, A. K. A., & Balestre, M. (2019). Heterogeneity of Variances in the Bayesian AMMI Model for Multienvironment Trial Studies. Crop Science, 59(6), 2455-2472. https://doi.org/10.2135/cropsci2018.10.0641
Smith, A. B., Cullis, B. R., & Thompson, R. (2005). The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. Journal of Agricultural Science, 143(6), 449-462. https://doi.org/10.1017/S0021859605005587
Smith, B. J. (2007). Boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference. Journal of Statistical Software, 21(11), 1-37.
Viele, K., & Srinivasan, C. (2000). Parsimonious estimation of multiplicative interaction in analysis of variance using Kullback-Leibler information. Journal of Statistical Planning and Inference, 84(1-2), 201-219. https://doi.org/10.1016/S0378-3758(99)00151-2
Yan, W., Glover, K. D., & Kang, M. S. (2010). Comment on “Biplot analysis of Genotype × environment interaction: proceed with caution”, by R.-C. Yang, J. Crossa, PL Cornelius, and J. Burgueño in 2009 49, 1564-1576. Crop Science, 50(4), 1121-1123. https://doi.org/10.2135/cropsci2010.01.0001le
Yang, R. C., Crossa, J., Cornelius, P. L., & Burgueño, J. (2009). Biplot analysis of genotype × environment interaction: proceed with caution. Crop Science, 49(5), 1564-1576. https://doi.org/10.2135/cropsci2008.11.0665
Zobel, R. W., Wright, M. J., & Gauch, H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388-393. https://doi.org/10.2134/agronj1988.00021962008 000030002x
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Alessandra Querino da Silva, Luciano Antonio de Oliveira, Carlos Pereira da Silva, Cristian Tiago Erazo Mendes, Elias Silva de Medeiros, Thelma Sáfadi
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.