Aplicação do modelo AMMI-bayesiano no estudo de estabilidade e adaptabilidade genotípica em dados de mostarda

Autores

DOI:

https://doi.org/10.33448/rsd-v9i9.7023

Palavras-chave:

Interação; Regiões de credibilidade; Biplot.

Resumo

A análise de conjuntos de dados provenientes de ensaios multiambientais é de fundamental importância nas fases finais dos programas de melhoramento de plantas. Nesse contexto, o Modelo de Efeitos Principais Aditivos e Interação Multiplicativa (AMMI) se tornou um método popular para avaliar respostas de genótipos em diversos ambientes. No presente trabalho aplicou-se o modelo AMMI, sob o enfoque bayesiano, a um conjunto de dados provenientes de um experimento em blocos casualizados com 12 genótipos (variedades) de mostarda em 6 ambientes distintos. O objetivo foi analisar estabilidade e adaptabilidade genotípica por meio da representação biplot AMMI-2, ressaltando diferenças dessa abordagem em relação a análise AMMI-clássica. Os resultados evidenciaram a grande flexibilidade do método bayesiano para incorporar efeito aleatório para genótipos, bem como inferência ao biplot por meio de regiões de credibilidade para escores genotípicos e ambientais que descrevem o efeito da interação genótipos por ambientes (GEI). As regiões de credibilidade construídas para efeitos principais e parâmetros bilineares permitiram identificar genótipos mais produtivos e visualizar subgrupos homogêneos de genótipos e ambientes em relação ao efeito da GEI. Os genótipos mais produtivos foram G8 e G10 e apenas o G2 foi considerado estatisticamente estável.

Biografia do Autor

Alessandra Querino da Silva, Universidade Federal da Grande Dourados

Doutora e Mestre em Estatística e Experimentação Agropecuária pela Universidade Federal de Lavras (UFLA). Licenciada em Matemática e também Bacharel em Estatística pela Universidade Estadual Paulista “Júlio Mesquita Filho” (UNESP).

Docente da Faculdade de Ciências Exatas e Tecnologia (FACET) da Universidade Federal da Grande Dourados (UFGD).

 

 

Referências

Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis. New York: John Wiley.

Chen, M. H., & Shao, Q. M. (1999). Monte Carlo estimation of bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics, 8(1), 69-92.

Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J. M., Viele, K; Liu, G., & Cornelius, P. L. (2011). Bayesian estimation of the additive main effects and multiplicative interaction model. Crop Science, 51(4), 1458-1469. https://doi.org/10.2135/cropsci2010.06.0343

Denis, J. B., & Gower, J. C. (1994). Asymptotic covariances for parameters of biadditive models. Utilitas Mathematica, v. 46, 193-205.

Duarte, J. B., & Vencovsky, R. (1999). Interação genótipos × ambientes: uma introdução à análise “AMMI”. Ribeirão Preto: Sociedade Brasileira de Genética.

Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal components analysis. Biometrika, 58(3), 453-467.

Heidelberger, P., & Welch, P. (1983). Simulation run length control in the presence of an initial transient. Operations Research, 31(6), 1109-1144.https://doi.org/10.1287/opre.31.6.1109

Indian Agricultural Statistics Research Institute. IASRI. (2014). Recuperado de http://www.iasri.res.in/design/Analysis%20of%20data/combined_anlysis_rcbd.html

Jarquin, D., Perez-Elizalde, S., Burgueño, J., & Crossa, J. (2016). A hierarchical Bayesian estimation model for multi-environment plant breeding trials in successive years. Crop Science, 56(5), 2260-2276. https://doi.org/10.2135/cropsci2015.08.0475

Júnior, L. A. Y. B., Silva, C. P., Oliveira, L. A., Nuvunga, J. J., Pires, L. P. M., Pinho, R. G. V., & Balestre, M. (2018). AMMI Bayesian Models to Study Stability and Adaptability in Maize. Agronomy Journal, 110(5), 1765-1776. https://doi.org/10.2134/agronj2017.11.0668

Kempton, R. A. (1984). The use of biplots in interpreting variety by environment interactions. Journal of Agricultural Science, 103(1), 123-135. https://doi.org/10.1017/S0021859 600043392

Liu, G. (2001). Bayesian computations for general linear-bilinear models. (Thesis, University of Kentucky).

Oliveira, L. A., Silva, C. P., Nuvunga, J. J., Silva, A. Q., & Balestre, M. (2015). Credible intervals for scores in the AMMI with random effects for genotype. Crop Science, 55(2), 465-476. https://doi.org/10.2135/cropsci2014.05.0369

Oliveira, L. A., Silva, C. P., Teodoro, P. E., Torres, F. E., Corrêa, A. M., & Bhering, L. L. (2017). Performance of Cowpea Genotypes in the Brazilian Midwest Using the Bayesian Additive Main Effects and Multiplicative Interaction Model. Agronomy Journal, 110(1), 147-154. https://doi.org/10.2134/agronj2017.03.0183

Ooms, J. C. L. (2009). The highest posterior density posterior prior for Bayesian model selection. (Master's thesis). https://dspace.library.uu.nl/handle/1874/34234

Perez-Elizalde, S., Jarquin, D., & Crossa, J. (2012). A general Bayesian estimation method of linear–bilinear models applied to plant breeding trials with genotype× environment interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17(1), 15-37. https://doi.org/10.1007/s13253-011-0063-9

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Raftery, A. E., & Lewis, S. (1992). How many iterations in the Gibbs sampler? In: Bernardo, J. M. et al. (Ed.), Bayesian statistics, 763-773. Oxford: Oxford University.

Resende, M. D. V., & Duarte, J. B. (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 37(3), 182-194. Recuperado de https://www.revistas.ufg.br/pat/article/view/1867.

Silva, C. P., Oliveira, L. A., Nuvunga, J. J., Pamplona, A. K. A., & Balestre, M. (2015). A Bayesian Shrinkage approach for AMMI Models. PLoS One, 10(7), 1-27. https://doi.org/10.1371/journal.pone.0131414

Silva, C. P., Oliveira, L. A., Nuvunga, J. J., Pamplona, A. K. A., & Balestre, M. (2019). Heterogeneity of Variances in the Bayesian AMMI Model for Multienvironment Trial Studies. Crop Science, 59(6), 2455-2472. https://doi.org/10.2135/cropsci2018.10.0641

Smith, A. B., Cullis, B. R., & Thompson, R. (2005). The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. Journal of Agricultural Science, 143(6), 449-462. https://doi.org/10.1017/S0021859605005587

Smith, B. J. (2007). Boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference. Journal of Statistical Software, 21(11), 1-37.

Viele, K., & Srinivasan, C. (2000). Parsimonious estimation of multiplicative interaction in analysis of variance using Kullback-Leibler information. Journal of Statistical Planning and Inference, 84(1-2), 201-219. https://doi.org/10.1016/S0378-3758(99)00151-2

Yan, W., Glover, K. D., & Kang, M. S. (2010). Comment on “Biplot analysis of Genotype × environment interaction: proceed with caution”, by R.-C. Yang, J. Crossa, PL Cornelius, and J. Burgueño in 2009 49, 1564-1576. Crop Science, 50(4), 1121-1123. https://doi.org/10.2135/cropsci2010.01.0001le

Yang, R. C., Crossa, J., Cornelius, P. L., & Burgueño, J. (2009). Biplot analysis of genotype × environment interaction: proceed with caution. Crop Science, 49(5), 1564-1576. https://doi.org/10.2135/cropsci2008.11.0665

Zobel, R. W., Wright, M. J., & Gauch, H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388-393. https://doi.org/10.2134/agronj1988.00021962008 000030002x

Downloads

Publicado

14/08/2020

Como Citar

SILVA, A. Q. da; OLIVEIRA, L. A. de; SILVA, C. P. da; MENDES, C. T. E.; MEDEIROS, E. S. de; SÁFADI, T. Aplicação do modelo AMMI-bayesiano no estudo de estabilidade e adaptabilidade genotípica em dados de mostarda. Research, Society and Development, [S. l.], v. 9, n. 9, p. e166997023, 2020. DOI: 10.33448/rsd-v9i9.7023. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7023. Acesso em: 22 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas