Classificação de imagens de Pneumonia em dispositivos móveis com Rede Neural Quantizada

Autores

DOI:

https://doi.org/10.33448/rsd-v9i10.8382

Palavras-chave:

Classificação; Imagens; Quantização; Dispositivos Móveis; Pneumonia.

Resumo

Este artigo apresenta uma abordagem para a classificação de imagens de radiografias de tórax de crianças em duas classes: pneumonia e normal. Empregamos Redes Neurais Convolucionais, a partir de redes pré-treinadas em conjunto com um processo de quantização, utilizando o método da plataforma TensorFlow Lite. Isso reduz a necessidade de processamento e o custo computacional. Os resultados mostraram precisão de até 95,4% e 94,2% para MobileNetV1 e MobileNetV2, respectivamente. O aplicativo móvel resultante também apresenta uma interface de usuário simples e intuitiva.

Referências

Abidin, A. Z., Deng, B., DSouza, A. M., Nagarajan, M. B., Coan, P., & Wismüller, A. (2018). Deep transfer learning for characterizing chondrocyte patterns in phase contrast X-Ray computed tomography images of the human patellar cartilage. Computers in Biology and Medicine, 95, 24-33. doi:https://doi.org/10.1016/j.compbiomed.2018.01.008

Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2018). Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification. CoRR, abs/1803.02315. Fonte: http://arxiv.org/abs/1803.02315

Bowers, A. J., & Zhou, X. (2019). Receiver operating characteristic (ROC) area under the curve (AUC): A diagnostic measure for evaluating the accuracy of predictors of education outcomes. Journal of Education for Students Placed at Risk (JESPAR), 24, 20–46.

Chen, C., Dou, Q., Chen, H., & Heng, P.-A. (2018). Semantic-Aware Generative Adversarial Nets for Unsupervised Domain Adaptation in Chest X-ray Segmentation. CoRR, abs/1806.00600. Fonte: http://arxiv.org/abs/1806.00600

Chen, X., Hu, X., Zhou, H., & Xu, N. (2017). Fxpnet: Training a deep convolutional neural network in fixed-point representation. 2017 International Joint Conference on Neural Networks (IJCNN), 2494–2501.

Choi, J., Chuang, P. I.-J., Wang, Z., Venkataramani, S., Srinivasan, V., & Gopalakrishnan, K. (2018). Bridging the accuracy gap for 2-bit quantized neural networks (QNN). arXiv preprint arXiv:1807.06964.

Dittimi, T. V., & Suen, C. Y. (2019). Mobile Phone based ensemble classification of Deep Learned Feature for Medical Image Analysis. IETE Technical Review, 1–12.

Douarre, C., Schielein, R., Frindel, C., Gerth, S., & Rousseau, D. (2018). Transfer Learning from Synthetic Data Applied to Soil–Root Segmentation in X-Ray Tomography Images. Journal of Imaging, 4. doi:10.3390/jimaging4050065

Gavai, N. R., Jakhade, Y. A., Tribhuvan, S. A., & Bhattad, R. (2017). MobileNets for flower classification using TensorFlow. 2017 International Conference on Big Data, IoT and Data Science (BID), 154–158.

He, K., Girshick, R. B., & Dollár, P. (2018). Rethinking ImageNet Pre-training. CoRR, abs/1811.08883. Fonte: http://arxiv.org/abs/1811.08883

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2017). Quantized neural networks: Training neural networks with low precision weights and activations. The Journal of Machine Learning Research, 18, 6869–6898.

Iorio, G., Capasso, M., Prisco, S., De Luca, G., Mancusi, C., Laganà, B., Comune, V. (2018). Lung Ultrasound Findings Undetectable by Chest Radiography in Children with Community-Acquired Pneumonia. Ultrasound in medicine & biology.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Kalenichenko, D. (2018). Quantization and training of neural networks for efficient integer-arithmetic-only inference. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 2704–2713).

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., et al. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172, 1122–1131.

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., Zhang, K. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172, 1122 - 1131.e9. doi:https://doi.org/10.1016/j.cell.2018.02.010

Kermany, D., Zhang, K., & Goldbaum, M. (2018). Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images. Mendeley Data V3. doi:http://dx.doi.org/10.17632/rscbjbr9sj.3

Khatami, A., Babaie, M., Tizhoosh, H. R., Khosravi, A., Nguyen, T., & Nahavandi, S. (2018). A sequential search-space shrinking using CNN transfer learning and a Radon projection pool for medical image retrieval. Expert Systems with Applications, 100, 224-233. doi:https://doi.org/10.1016/j.eswa.2018.01.056

Kunz, W. G., Patzig, M., Crispin, A., Stahl, R., Reiser, M. F., & Notohamiprodjo, M. (2018). The Value of Supine Chest X-Ray in the Diagnosis of Pneumonia in the Basal Lung Zones. Academic radiology.

Kurt, I. S., Unluer, E. E., Evrin, T., Katipoglu, B., & Eser, U. (2018). Urine Dipstick of Sputum for the Rapid Diagnosis of Community Acquired Pneumonia. Journal of the National Medical Association.

Malmir, B., Amini, M., & Chang, S. I. (2017). A medical decision support system for disease diagnosis under uncertainty. Expert Systems with Applications, 88, 95–108.

Manogaran, G., Varatharajan, R., & Priyan, M. K. (2018). Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimedia tools and applications, 77, 4379–4399.

Moons, B., Goetschalckx, K., Van Berckelaer, N., & Verhelst, M. (2017). Minimum energy quantized neural networks. 2017 51st Asilomar Conference on Signals, Systems, and Computers, 1921–1925.

Ramalingam, S., & Garzia, F. (10 de 2018). Facial Expression Recognition using Transfer Learning. 2018 International Carnahan Conference on Security Technology (ICCST), (pp. 1-5). doi:10.1109/CCST.2018.8585504

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520.

Saraiva, A., Melo, R. T., Filipe, V., Sousa, J. V., Ferreira, N. F., & Valente, A. (2018). Mobile multirobot manipulation by image recognition.

Saraiva., A. A., Ferreira., N. M., de Sousa., L. L., Costa., N. J., Sousa., J. V., Santos., D. B., Soares., S. (2019). Classification of Images of Childhood Pneumonia using Convolutional Neural Networks. Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies. 2, 112-119. SciTePress. doi:10.5220/0007404301120119

Saraiva., A. A., Santos., D. B., Costa., N. J., Sousa., J. V., Ferreira., N. M., Valente., A., & Soares., S. (2019). Models of Learning to Classify X-ray Images for the Detection of Pneumonia using Neural Networks. Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies. 2, 76-83. SciTePress. doi:10.5220/0007346600760083

Shallu, & Mehra, R. (2018). Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express, 4, 247-254. doi:https://doi.org/10.1016/j.icte.2018.10.007

Ting, K. M. (2017). Confusion Matrix. Em C. Sammut, G. I. Webb (Eds.), Encyclopedia of Machine Learning and Data Mining (pp. 260–260). Boston, MA: Springer US. doi:10.1007/978-1-4899-7687-1_50

World, O. (2016). World, Health, Organization pneumonia. Retrieved from https://www.who.int/en/news-room/fact-sheets/detail/pneumonia

Wu, L. (2019). Biomedical Image Segmentation and Object Detection Using Deep Convolutional Neural Networks. Ph.D. dissertation, figshare.

Wu, Y., Qin, X., Pan, Y., & Yuan, C. (7 de 2018). Convolution Neural Network based Transfer Learning for Classification of Flowers. 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), (pp. 562-566). doi:10.1109/SIPROCESS.2018.8600536

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 8697–8710.

Downloads

Publicado

19/09/2020

Como Citar

SOUSA, J. V. M. .; ALMEIDA, V. R. de .; SARAIVA, A. A. .; SANTOS, D. B. S. .; PIMENTEL, P. M. C.; SOUSA, L. L. de . Classificação de imagens de Pneumonia em dispositivos móveis com Rede Neural Quantizada. Research, Society and Development, [S. l.], v. 9, n. 10, p. e889108382, 2020. DOI: 10.33448/rsd-v9i10.8382. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8382. Acesso em: 25 nov. 2024.

Edição

Seção

Engenharias