Classificação de imagens de Pneumonia em dispositivos móveis com Rede Neural Quantizada
DOI:
https://doi.org/10.33448/rsd-v9i10.8382Palavras-chave:
Classificação; Imagens; Quantização; Dispositivos Móveis; Pneumonia.Resumo
Este artigo apresenta uma abordagem para a classificação de imagens de radiografias de tórax de crianças em duas classes: pneumonia e normal. Empregamos Redes Neurais Convolucionais, a partir de redes pré-treinadas em conjunto com um processo de quantização, utilizando o método da plataforma TensorFlow Lite. Isso reduz a necessidade de processamento e o custo computacional. Os resultados mostraram precisão de até 95,4% e 94,2% para MobileNetV1 e MobileNetV2, respectivamente. O aplicativo móvel resultante também apresenta uma interface de usuário simples e intuitiva.
Referências
Abidin, A. Z., Deng, B., DSouza, A. M., Nagarajan, M. B., Coan, P., & Wismüller, A. (2018). Deep transfer learning for characterizing chondrocyte patterns in phase contrast X-Ray computed tomography images of the human patellar cartilage. Computers in Biology and Medicine, 95, 24-33. doi:https://doi.org/10.1016/j.compbiomed.2018.01.008
Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2018). Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification. CoRR, abs/1803.02315. Fonte: http://arxiv.org/abs/1803.02315
Bowers, A. J., & Zhou, X. (2019). Receiver operating characteristic (ROC) area under the curve (AUC): A diagnostic measure for evaluating the accuracy of predictors of education outcomes. Journal of Education for Students Placed at Risk (JESPAR), 24, 20–46.
Chen, C., Dou, Q., Chen, H., & Heng, P.-A. (2018). Semantic-Aware Generative Adversarial Nets for Unsupervised Domain Adaptation in Chest X-ray Segmentation. CoRR, abs/1806.00600. Fonte: http://arxiv.org/abs/1806.00600
Chen, X., Hu, X., Zhou, H., & Xu, N. (2017). Fxpnet: Training a deep convolutional neural network in fixed-point representation. 2017 International Joint Conference on Neural Networks (IJCNN), 2494–2501.
Choi, J., Chuang, P. I.-J., Wang, Z., Venkataramani, S., Srinivasan, V., & Gopalakrishnan, K. (2018). Bridging the accuracy gap for 2-bit quantized neural networks (QNN). arXiv preprint arXiv:1807.06964.
Dittimi, T. V., & Suen, C. Y. (2019). Mobile Phone based ensemble classification of Deep Learned Feature for Medical Image Analysis. IETE Technical Review, 1–12.
Douarre, C., Schielein, R., Frindel, C., Gerth, S., & Rousseau, D. (2018). Transfer Learning from Synthetic Data Applied to Soil–Root Segmentation in X-Ray Tomography Images. Journal of Imaging, 4. doi:10.3390/jimaging4050065
Gavai, N. R., Jakhade, Y. A., Tribhuvan, S. A., & Bhattad, R. (2017). MobileNets for flower classification using TensorFlow. 2017 International Conference on Big Data, IoT and Data Science (BID), 154–158.
He, K., Girshick, R. B., & Dollár, P. (2018). Rethinking ImageNet Pre-training. CoRR, abs/1811.08883. Fonte: http://arxiv.org/abs/1811.08883
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2017). Quantized neural networks: Training neural networks with low precision weights and activations. The Journal of Machine Learning Research, 18, 6869–6898.
Iorio, G., Capasso, M., Prisco, S., De Luca, G., Mancusi, C., Laganà, B., Comune, V. (2018). Lung Ultrasound Findings Undetectable by Chest Radiography in Children with Community-Acquired Pneumonia. Ultrasound in medicine & biology.
Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Kalenichenko, D. (2018). Quantization and training of neural networks for efficient integer-arithmetic-only inference. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 2704–2713).
Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., et al. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172, 1122–1131.
Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., Zhang, K. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172, 1122 - 1131.e9. doi:https://doi.org/10.1016/j.cell.2018.02.010
Kermany, D., Zhang, K., & Goldbaum, M. (2018). Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images. Mendeley Data V3. doi:http://dx.doi.org/10.17632/rscbjbr9sj.3
Khatami, A., Babaie, M., Tizhoosh, H. R., Khosravi, A., Nguyen, T., & Nahavandi, S. (2018). A sequential search-space shrinking using CNN transfer learning and a Radon projection pool for medical image retrieval. Expert Systems with Applications, 100, 224-233. doi:https://doi.org/10.1016/j.eswa.2018.01.056
Kunz, W. G., Patzig, M., Crispin, A., Stahl, R., Reiser, M. F., & Notohamiprodjo, M. (2018). The Value of Supine Chest X-Ray in the Diagnosis of Pneumonia in the Basal Lung Zones. Academic radiology.
Kurt, I. S., Unluer, E. E., Evrin, T., Katipoglu, B., & Eser, U. (2018). Urine Dipstick of Sputum for the Rapid Diagnosis of Community Acquired Pneumonia. Journal of the National Medical Association.
Malmir, B., Amini, M., & Chang, S. I. (2017). A medical decision support system for disease diagnosis under uncertainty. Expert Systems with Applications, 88, 95–108.
Manogaran, G., Varatharajan, R., & Priyan, M. K. (2018). Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimedia tools and applications, 77, 4379–4399.
Moons, B., Goetschalckx, K., Van Berckelaer, N., & Verhelst, M. (2017). Minimum energy quantized neural networks. 2017 51st Asilomar Conference on Signals, Systems, and Computers, 1921–1925.
Ramalingam, S., & Garzia, F. (10 de 2018). Facial Expression Recognition using Transfer Learning. 2018 International Carnahan Conference on Security Technology (ICCST), (pp. 1-5). doi:10.1109/CCST.2018.8585504
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520.
Saraiva, A., Melo, R. T., Filipe, V., Sousa, J. V., Ferreira, N. F., & Valente, A. (2018). Mobile multirobot manipulation by image recognition.
Saraiva., A. A., Ferreira., N. M., de Sousa., L. L., Costa., N. J., Sousa., J. V., Santos., D. B., Soares., S. (2019). Classification of Images of Childhood Pneumonia using Convolutional Neural Networks. Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies. 2, 112-119. SciTePress. doi:10.5220/0007404301120119
Saraiva., A. A., Santos., D. B., Costa., N. J., Sousa., J. V., Ferreira., N. M., Valente., A., & Soares., S. (2019). Models of Learning to Classify X-ray Images for the Detection of Pneumonia using Neural Networks. Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies. 2, 76-83. SciTePress. doi:10.5220/0007346600760083
Shallu, & Mehra, R. (2018). Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express, 4, 247-254. doi:https://doi.org/10.1016/j.icte.2018.10.007
Ting, K. M. (2017). Confusion Matrix. Em C. Sammut, G. I. Webb (Eds.), Encyclopedia of Machine Learning and Data Mining (pp. 260–260). Boston, MA: Springer US. doi:10.1007/978-1-4899-7687-1_50
World, O. (2016). World, Health, Organization pneumonia. Retrieved from https://www.who.int/en/news-room/fact-sheets/detail/pneumonia
Wu, L. (2019). Biomedical Image Segmentation and Object Detection Using Deep Convolutional Neural Networks. Ph.D. dissertation, figshare.
Wu, Y., Qin, X., Pan, Y., & Yuan, C. (7 de 2018). Convolution Neural Network based Transfer Learning for Classification of Flowers. 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), (pp. 562-566). doi:10.1109/SIPROCESS.2018.8600536
Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 8697–8710.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Jose Vigno Moura Sousa; Vilson Rosa de Almeida; Aratã Andrade Saraiva; Domingos Bruno Sousa Santos; Pedro Mateus Cunha Pimentel; Luciano Lopes de Sousa
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.