Potencial da terapia por fotobiomodulação no tratamento da atrofia do músculo esquelético
DOI:
https://doi.org/10.33448/rsd-v10i1.8527Palavras-chave:
Fototerapia; Lasers; Atrofia muscular; Reabilitação.Resumo
A atrofia do tecido muscular estriado esquelético é um processo complexo causado por um desequilíbrio entre a degradação e síntese de proteínas miofibrilares, levando à redução da força muscular e, consequentemente, influencia o comportamento emocional, a saúde mental e a qualidade de vida dos indivíduos. Desta forma, a atenuação da atrofia e estímulo para formação de um novo tecido muscular é um desafio para reabilitação. Esforços consideráveis têm sido dedicados ao estabelecimento de novos tratamentos, entretanto, ainda faltam dados experimentais e clínicos confiáveis para sua aplicação clínica. Dentre as recursos terapêuticos disponíveis, a terapia por fotobiomodulação (PBMT, do inglês photobiomodulation therapy) apresenta um grande potencial, visto que é frequentemente utilizada como estratégia terapêutica promissoras para a reabilitação do tecido muscular estriado esquelético. Dentro deste contexto, o objetivo deste estudo é proporcionar, através de uma revisão narrativa, uma compreensão das evidências atuais disponíveis sobre a importância da PBMT no tratamento de atrofia do músculo esquelético. As buscas foram realizadas nas bases de dados bibliográficas do PubMed/MEDLINE, Biblioteca virtual da saúde (BVS), Web of Science e SciELO. As evidências encontradas neste estudo direcionam que a PBMT pode ser proposta como uma intervenção terapêutica eficaz no tratamento da atrofia muscular, devido ao potencial de estimular fatores regulatórios miogênicos que promovem a ativação e proliferação de células satélites e consequente aumento da formação de fibras musculares, assim como atenuar e apoptose de celular as vias de proteólise da fibra muscular.
Referências
Abreu, Phablo, Leal-Cardoso, José Henrique, Ceccatto, Vânia Marilande, & Hirabara, Sandro Massao. (2017). Regulation of muscle plasticity and trophism by fatty acids: A short review. Revista da Associação Médica Brasileira, 63(2), 148-155. https://doi.org/10.1590/1806-9282.63.02.148
Amaral, A. C., Parizotto, N. A., & Salvini, T. F. (2001). Dose-dependency of low-energy HeNe laser effect in regeneration of skeletal muscle in mice. Lasers in medical science, 16(1), 44–51. https://doi.org/10.1007/pl00011336
Andraus, R., Maia, L. P., de Souza Lino, A. D., Fernandes, K., de Matos Gomes, M. V., de Jesus Guirro, R. R., & Barbieri, C. H. (2017). LLLT actives MMP-2 and increases muscle mechanical resistance after nerve sciatic rat regeneration. Lasers in medical science, 32(4), 771–778. https://doi.org/10.1007/s10103-017-2169-y
Andreo, L., Ribeiro, B. G., Alves, A. N., Martinelli, A., Soldera, C. B., Horliana, A., Bussadori, S. K., Fernandes, K., & Mesquita-Ferrari, R. A. (2020). Effects of Photobiomodulation with Low-level Laser Therapy on Muscle Repair Following a Peripheral Nerve Injury in Wistar Rats. Photochemistry and photobiology, 10.1111/php.13255. Advance online publication. https://doi.org/10.1111/php.13255
Andreo, L., Soldera, C. A., Ribeiro, B. G., de Matos, P., Sousa, P. B., de Alcântara Araújo Amorim, W. W., Horliana, A., Bussadori, S. K., Fernandes, K., & Mesquita-Ferrari, R. A. (2019). Effects of Photobiomodulation on Functionality in Wistar Rats with Sciatic Nerve Injury. Photochemistry and photobiology, 95(3), 879–885. https://doi.org/10.1111/php.13048
Aoki, M. S., Miyabara, E. H., Soares, A. G., Salvini, T. F., & Moriscot, A. S. (2006). Cyclosporin-A does not affect skeletal muscle mass during disuse and recovery. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 39(2), 243–251. https://doi.org/10.1590/s0100-879x2006000200011
Alves, A. N., Fernandes, K. P., Deana, A. M., Bussadori, S. K., & Mesquita-Ferrari, R. A. (2014). Effects of low-level laser therapy on skeletal muscle repair: a systematic review. American journal of physical medicine & rehabilitation, 93(12), 1073–1085. https://doi.org/10.1097/PHM.0000000000000158
Assis, L., Almeida, T., Milares, L. P., dos Passos, N., Araújo, B., Bublitz, C., Veronez, S., & Renno, A. C. (2015). Musculoskeletal Atrophy in an Experimental Model of Knee Osteoarthritis: The Effects of Exercise Training and Low-Level Laser Therapy. American journal of physical medicine & rehabilitation, 94(8), 609–616. https://doi.org/10.1097/PHM.0000000000000219
Baehr, L. M., West, D., Marshall, A. G., Marcotte, G. R., Baar, K., & Bodine, S. C. (2017). Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. Journal of applied physiology (Bethesda, Md. : 1985), 122(5), 1336–1350. https://doi.org/10.1152/japplphysiol.00703.2016
Baptista, I. L., Silvestre, J. G., Silva, W. J., Labeit, S., & Moriscot, A. S. (2017). FoxO3a suppression and VPS34 activity are essential to anti-atrophic effects of leucine in skeletal muscle. Cell and tissue research, 369(2), 381–394. https://doi.org/10.1007/s00441-017-2614-z
Beaudart, C., Biver, E., Bruyère, O., Cooper, C., Al-Daghri, N., Reginster, J. Y., & Rizzoli, R. (2018). Quality of life assessment in musculo-skeletal health. Aging clinical and experimental research, 30(5), 413–418. https://doi.org/10.1007/s40520-017-0794-8
Ben-Dov, N., Shefer, G., Irintchev, A., Wernig, A., Oron, U., & Halevy, O. (1999). Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochimica et biophysica acta, 1448(3), 372–380. https://doi.org/10.1016/s0167-4889(98)00147-5
Bibikova, A., Belkin, V., & Oron, U. (1994). Enhancement of angiogenesis in regenerating gastrocnemius muscle of the toad (Bufo viridis) by low-energy laser irradiation. Anatomy and embryology, 190(6), 597–602. https://doi.org/10.1007/BF00190110
Bloemberg, D., & Quadrilatero, J. (2012). Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PloS one, 7(4), e35273. https://doi.org/10.1371/journal.pone.0035273
Bodine, S. C., & Baehr, L. M. (2014). Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. American journal of physiology. Endocrinology and metabolism, 307(6), E469–E484. https://doi.org/10.1152/ajpendo.00204.2014
Boonyarom, O., & Inui, K. (2006). Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta physiologica (Oxford, England), 188(2), 77–89. https://doi.org/10.1111/j.1748-1716.2006.01613.x
Brito, A. A., da Silveira, E. C., Rigonato-Oliveira, N. C., Soares, S. S., Brandao-Rangel, M., Soares, C. R., Santos, T. G., Alves, C. E., Herculano, K. Z., Vieira, R. P., Lino-Dos-Santos-Franco, A., Albertini, R., Aimbire, F., & de Oliveira, A. P. (2020). Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: Relevance to cytokines secretion from lung structural cells. Journal of photochemistry and photobiology. B, Biology, 203, 111731. https://doi.org/10.1016/j.jphotobiol.2019.111731
Brook, M. S., Wilkinson, D. J., Phillips, B. E., Perez-Schindler, J., Philp, A., Smith, K., & Atherton, P. J. (2016). Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta physiologica (Oxford, England), 216(1), 15–41. https://doi.org/10.1111/apha.12532
Chung, H., Dai, T., Sharma, S. K., Huang, Y. Y., Carroll, J. D., & Hamblin, M. R. (2012). The nuts and bolts of low-level laser (light) therapy. Annals of biomedical engineering, 40(2), 516–533. https://doi.org/10.1007/s10439-011-0454-7
Cohen, S., Nathan, J. A., & Goldberg, A. L. (2015). Muscle wasting in disease: molecular mechanisms and promising therapies. Nature reviews. Drug discovery, 14(1), 58–74. https://doi.org/10.1038/nrd4467
Cressoni, M. D., Dib Giusti, H. H., Casarotto, R. A., & Anaruma, C. A. (2008). The effects of a 785-nm AlGaInP laser on the regeneration of rat anterior tibialis muscle after surgically-induced injury. Photomedicine and laser surgery, 26(5), 461–466. https://doi.org/10.1089/pho.2007.2150
da Silva, C. A., Guirro, R. R., Polacow, M. L., Cancelliero, K. M., & Durigan, J. L. (2006). Rat hindlimb joint immobilization with acrylic resin orthoses. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 39(7), 979–985. https://doi.org/10.1590/s0100-879x2006000700016
de Brito, A., Alves, A. N., Ribeiro, B. G., Barbosa, D., Magalhaes, E., Fernandes, K., Bussadori, S. K., Goulardins, J. B., & Mesquita-Ferrari, R. A. (2018). Effect of photobiomodulation on connective tissue remodeling and regeneration of skeletal muscle in elderly rats. Lasers in medical science, 33(3), 513–521. https://doi.org/10.1007/s10103-017-2392-6
de Freitas, L. F., & Hamblin, M. R. (2016). Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE journal of selected topics in quantum electronics : a publication of the IEEE Lasers and Electro-optics Society, 22(3), 7000417. https://doi.org/10.1109/JSTQE.2016.2561201
Farivar, S., Malekshahabi, T., & Shiari, R. (2014). Biological effects of low level laser therapy. Journal of lasers in medical sciences, 5(2), 58–62.
Feng, H. Z., Chen, X., Malek, M. H., & Jin, J. P. (2016). Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers. American journal of physiology. Cell physiology, 310(1), C27–C40. https://doi.org/10.1152/ajpcell.00173.2015
Ferraresi, C., Kaippert, B., Avci, P., Huang, Y. Y., de Sousa, M. V., Bagnato, V. S., Parizotto, N. A., & Hamblin, M. R. (2015). Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 h. Photochemistry and photobiology, 91(2), 411–416. https://doi.org/10.1111/php.12397
Ferraresi, C., Hamblin, M. R., & Parizotto, N. A. (2012). Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics & lasers in medicine, 1(4), 267–286. https://doi.org/10.1515/plm-2012-0032
Ferraresi, C., Huang, Y. Y., & Hamblin, M. R. (2016). Photobiomodulation in human muscle tissue: an advantage in sports performance?. Journal of biophotonics, 9(11-12), 1273–1299. https://doi.org/10.1002/jbio.201600176
Fink, J., Kikuchi, N., & Nakazato, K. (2018). Effects of rest intervals and training loads on metabolic stress and muscle hypertrophy. Clinical physiology and functional imaging, 38(2), 261–268. https://doi.org/10.1111/cpf.12409
Fink, J., Schoenfeld, B. J., Kikuchi, N., & Nakazato, K. (2018). Effects of drop set resistance training on acute stress indicators and long-term muscle hypertrophy and strength. The Journal of sports medicine and physical fitness, 58(5), 597–605. https://doi.org/10.23736/S0022-4707.17.06838-4
Frontera, W. R., & Ochala, J. (2015). Skeletal muscle: a brief review of structure and function. Calcified tissue international, 96(3), 183–195. https://doi.org/10.1007/s00223-014-9915-y
Gao, Y., Arfat, Y., Wang, H., & Goswami, N. (2018). Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures. Frontiers in physiology, 9, 235. https://doi.org/10.3389/fphys.2018.00235
Gigo-Benato, D., Russo, T. L., Tanaka, E. H., Assis, L., Salvini, T. F., & Parizotto, N. A. (2010). Effects of 660 and 780 nm low-level laser therapy on neuromuscular recovery after crush injury in rat sciatic nerve. Lasers in surgery and medicine, 42(9), 673–682. https://doi.org/10.1002/lsm.20978
Goto, K., Sakamoto, J., Nakano, J., Kataoka, H., Honda, Y., Sasabe, R., Origuchi, T., & Okita, M. (2017). Development and progression of immobilization-induced skin fibrosis through overexpression of transforming growth factor-ß1 and hypoxic conditions in a rat knee joint contracture model. Connective tissue research, 58(6), 586–596. https://doi.org/10.1080/03008207.2017.1284823
Gruet, M., Troosters, T., & Verges, S. (2017). Peripheral muscle abnormalities in cystic fibrosis: Etiology, clinical implications and response to therapeutic interventions. Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 16(5), 538–552. https://doi.org/10.1016/j.jcf.2017.02.007
Hamblin M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS biophysics, 4(3), 337–361. https://doi.org/10.3934/biophy.2017.3.337
Hamblin M. R. (2016). Photobiomodulation or low-level laser therapy. Journal of biophotonics, 9(11-12), 1122–1124. https://doi.org/10.1002/jbio.201670113
Heiskanen, V., & Hamblin, M. R. (2018). Correction: Photobiomodulation: lasers vs. light emitting diodes?. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 18(1), 259. Advance online publication. https://doi.org/10.1039/c8pp90049c
Hernández-Hernández, J. M., García-González, E. G., Brun, C. E., & Rudnicki, M. A. (2017). The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Seminars in cell & developmental biology, 72, 10–18. https://doi.org/10.1016/j.semcdb.2017.11.010
Hindi, S. M., Tajrishi, M. M., & Kumar, A. (2013). Signaling mechanisms in mammalian myoblast fusion. Science signaling, 6(272), re2. https://doi.org/10.1126/scisignal.2003832
Huang, Y. Y., Chen, A. C., Carroll, J. D., & Hamblin, M. R. (2009). Biphasic dose response in low level light therapy. Dose-response : a publication of International Hormesis Society, 7(4), 358–383. https://doi.org/10.2203/dose-response.09-027.
Iyomasa, D. M., Garavelo, I., Iyomasa, M. M., Watanabe, I. S., & Issa, J. P. (2009). Ultrastructural analysis of the low level laser therapy effects on the lesioned anterior tibial muscle in the gerbil. Micron (Oxford, England : 1993), 40(4), 413–418. https://doi.org/10.1016/j.micron.2009.02.002
Järvinen, T. A., Józsa, L., Kannus, P., Järvinen, T. L., & Järvinen, M. (2002). Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study. Journal of muscle research and cell motility, 23(3), 245–254. https://doi.org/10.1023/a:1020904518336
Joglekar, S., Nau, P. N., & Mezhir, J. J. (2015). The impact of sarcopenia on survival and complications in surgical oncology: A review of the current literature. Journal of surgical oncology, 112(5), 503–509. https://doi.org/10.1002/jso.24025
Jagoe, R. T., & Goldberg, A. L. (2001). What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?. Current opinion in clinical nutrition and metabolic care, 4(3), 183–190. https://doi.org/10.1097/00075197-200105000-00003
Kablar, B., Krastel, K., Ying, C., Tapscott, S. J., Goldhamer, D. J., & Rudnicki, M. A. (1999). Myogenic determination occurs independently in somites and limb buds. Developmental biology, 206(2), 219–231. https://doi.org/10.1006/dbio.1998.9126
Karu T. I. (2010). Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB life, 62(8), 607–610. https://doi.org/10.1002/iub.359
Kou, Y. T., Liu, H. T., Hou, C. Y., Lin, C. Y., Tsai, C. M., & Chang, H. (2019). A transient protective effect of low-level laser irradiation against disuse-induced atrophy of rats. Lasers in medical science, 34(9), 1829–1839. https://doi.org/10.1007/s10103-019-02778-5
Lakyová, L., Toporcer, T., Tomečková, V., Sabo, J., & Radoňak, J. (2010). Low-level laser therapy for protection against skeletal muscle damage after ischemia-reperfusion injury in rat hindlimbs. Lasers in surgery and medicine, 42(9), 665–672. https://doi.org/10.1002/lsm.20967
Lee, H. K., Rocnik, E., Fu, Q., Kwon, B., Zeng, L., Walsh, K., & Querfurth, H. (2012). Foxo/atrogin induction in human and experimental myositis. Neurobiology of disease, 46(2), 463–475. https://doi.org/10.1016/j.nbd.2012.02.011
Lee, J. H., & Jun, H. S. (2019). Role of Myokines in Regulating Skeletal Muscle Mass and Function. Frontiers in physiology, 10, 42. https://doi.org/10.3389/fphys.2019.00042
Macedo, D. B., Tim R. C., Macedo, J. B. S. C., Macedo, G. M., Martignago, C. C. S., & Assis, L. (2020). Therapeutic perspective of light for coronavirus treatment. Research, Society and Development, 9(8), e766986320. http://dx.doi.org/10.33448/rsd-v9i8.6320
Mandelbaum-Livnat, M. M., Almog, M., Nissan, M., Loeb, E., Shapira, Y., & Rochkind, S. (2016). Photobiomodulation Triple Treatment in Peripheral Nerve Injury: Nerve and Muscle Response. Photomedicine and laser surgery, 34(12), 638–645. https://doi.org/10.1089/pho.2016.4095
March, L., Smith, E. U., Hoy, D. G., Cross, M. J., Sanchez-Riera, L., Blyth, F., Buchbinder, R., Vos, T., & Woolf, A. D. (2014). Burden of disability due to musculoskeletal (MSK) disorders. Best practice & research. Clinical rheumatology, 28(3), 353–366. https://doi.org/10.1016/j.berh.2014.08.002
Mesquita-Ferrari, R. A., Martins, M. D., Silva, J. A., Jr, da Silva, T. D., Piovesan, R. F., Pavesi, V. C., Bussadori, S. K., & Fernandes, K. P. (2011). Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers in medical science, 26(3), 335–340. https://doi.org/10.1007/s10103-010-0850-5
Monte Alegre, D. C., Almeida, J. F. S., Oliveira, T. V. C., Cândido, E. A. F. (2012). Plasticidade muscular: do músculo sadio ao espastico. Fisioterapia, 2, (1), 16‐34. https://doi.org/10.6008/ESS2236-9600.2012.001.0003
Moraes, J. P., Tim R. C., & Assis, L. (2020). Considerations about the use of Ozone therapy (O3) in the treatment of Endometriosis. Research, Society and Development, 9(9), e403997616. http://dx.doi.org/10.33448/rsd-v9i9.7616
Morley, J. E., Kalantar-Zadeh, K., & Anker, S. D. (2020). COVID-19: a major cause of cachexia and sarcopenia?. Journal of cachexia, sarcopenia and muscle, 11(4), 863–865. https://doi.org/10.1002/jcsm.12589
Muniz, K. L., Dias, F. J., Coutinho-Netto, J., Calzzani, R. A., Iyomasa, M. M., Sousa, L. G., Santos, T. T., Teles, V., Watanabe, I. S., Fazan, V. P., & Issa, J. P. (2015). Properties of the tibialis anterior muscle after treatment with laser therapy and natural latex protein following sciatic nerve crush. Muscle & nerve, 52(5), 869–875. https://doi.org/10.1002/mus.24602
Musarò, A., & Carosio, S. (2017). Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle. Methods in molecular biology (Clifton, N.J.), 1553, 155–167.
Nakano, J., Kataoka, H., Sakamoto, J., Origuchi, T., Okita, M., & Yoshimura, T. (2009). Low-level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats. Experimental physiology, 94(9), 1005–1015. https://doi.org/10.1113/expphysiol.2009.047738
Ono S. (2010). Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken, N.J.), 67(11), 677–692. https://doi.org/10.1002/cm.20476
Ramos, L., Leal Junior, E. C., Pallotta, R. C., Frigo, L., Marcos, R. L., de Carvalho, M. H., Bjordal, J. M., & Lopes-Martins, R. Á. (2012). Infrared (810 nm) low-level laser therapy in experimental model of strain-induced skeletal muscle injury in rats: effects on functional outcomes. Photochemistry and photobiology, 88(1), 154–160. https://doi.org/10.1111/j.1751-1097.2011.01030.x
Rochkind, S., & Shainberg, A. (2013). Protective effect of laser phototherapy on acetylcholine receptors and creatine kinase activity in denervated muscle. Photomedicine and laser surgery, 31(10), 499–504. https://doi.org/10.1089/pho.2013.3537
Rom, O., & Reznick, A. Z. (2016). The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free radical biology & medicine, 98, 218–230. https://doi.org/10.1016/j.freeradbiomed.2015.12.031
Rosa-Caldwell, M. E., & Greene, N. P. (2019). Muscle metabolism and atrophy: let's talk about sex. Biology of sex differences, 10(1), 43. https://doi.org/10.1186/s13293-019-0257-3
Russo, T. L., Peviani, S. M., Durigan, J. L., Gigo-Benato, D., Delfino, G. B., & Salvini, T. F. (2010). Stretching and electrical stimulation reduce the accumulation of MyoD, myostatin and atrogin-1 in denervated rat skeletal muscle. Journal of muscle research and cell motility, 31(1), 45–57. https://doi.org/10.1007/s10974-010-9203-z
Santiago, E. J. P., Freire, A. K. S., Ferreira, D. S. A., Amorim, J. F., Cunha, A. L. X., Freitas, J. R., Silva, A. S. A., Moreira, G. R., Cantalice, J. R. B., & Cunha Filho, M. (2020). Velocity of deaths and confirmed cases of COVID-19 in Brazil, Italy and worldwide. Research, Society and Development, 9(7), e263974085. https://doi.org/10.33448/rsd-v9i7.4085
Schiaffino, S., Dyar, K. A., Ciciliot, S., Blaauw, B., & Sandri, M. (2013). Mechanisms regulating skeletal muscle growth and atrophy. The FEBS journal, 280(17), 4294–4314. https://doi.org/10.1111/febs.12253
Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiological reviews, 91(4), 1447–1531. https://doi.org/10.1152/physrev.00031.2010
Scicchitano, B. M., Faraldi, M., & Musarò, A. (2015). The Proteolytic Systems of Muscle Wasting. Recent advances in DNA & gene sequences, 9(1), 26–35. https://doi.org/10.2174/2352092209999150911121502
Silva-Couto, M. A., Gigo-Benato, D., Tim, C. R., Parizotto, N. A., Salvini, T. F., & Russo, T. L. (2012). Effects of low-level laser therapy after nerve reconstruction in rat denervated soleus muscle adaptation. Revista brasileira de fisioterapia (Sao Carlos (Sao Paulo, Brazil)), 16(4), 320–327. https://doi.org/10.1590/s1413-35552012005000035
Silveira, P. C., Silva, L. A., Fraga, D. B., Freitas, T. P., Streck, E. L., & Pinho, R. (2009). Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. Journal of photochemistry and photobiology. B, Biology, 95(2), 89–92. https://doi.org/10.1016/j.jphotobiol.2009.01.004
Shefer, G., Oron, U., Irintchev, A., Wernig, A., & Halevy, O. (2001). Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. Journal of cellular physiology, 187(1), 73–80. https://doi.org/10.1002/1097-4652(2001)9999:9999<::AID-JCP1053>3.0.CO;2-9
Shefer, G., Partridge, T. A., Heslop, L., Gross, J. G., Oron, U., & Halevy, O. (2002). Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. Journal of cell science, 115(Pt 7), 1461–1469.
Shen, C. C., Yang, Y. C., & Liu, B. S. (2013). Effects of large-area irradiated laser phototherapy on peripheral nerve regeneration across a large gap in a biomaterial conduit. Journal of biomedical materials research. Part A, 101(1), 239–252. https://doi.org/10.1002/jbm.a.34314
Shi, X., & Garry, D. J. (2006). Muscle stem cells in development, regeneration, and disease. Genes & development, 20(13), 1692–1708. https://doi.org/10.1101/gad.1419406
Spangenburg, E. E., & Booth, F. W. (2003). Molecular regulation of individual skeletal muscle fibre types. Acta physiologica Scandinavica, 178(4), 413–424. https://doi.org/10.1046/j.1365-201X.2003.01158.x
Svobodova, B., Kloudova, A., Ruzicka, J., Kajtmanova, L., Navratil, L., Sedlacek, R., Suchy, T., Jhanwar-Uniyal, M., Jendelova, P., & Machova Urdzikova, L. (2019). The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury. Scientific reports, 9(1), 7660. https://doi.org/10.1038/s41598-019-44141-2
Terena, S., Fernandes, K., Bussadori, S. K., Brugnera Junior, A., de Fátima Teixeira da Silva, D., Magalhães, E., & Ferrari, R. (2018). Infrared Laser Improves Collagen Organization in Muscle and Tendon Tissue During the Process of Compensatory Overload. Photomedicine and laser surgery, 36(3), 130–136. https://doi.org/10.1089/pho.2017.4302
Wall, B. T., Dirks, M. L., Snijders, T., Senden, J. M., Dolmans, J., & van Loon, L. J. (2014). Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta physiologica (Oxford, England), 210(3), 600–611. https://doi.org/10.1111/apha.12190
Wall, B. T., & van Loon, L. J. (2013). Nutritional strategies to attenuate muscle disuse atrophy. Nutrition reviews, 71(4), 195–208. https://doi.org/10.1111/nure.12019
Wang, Y., Zhou, Y., & Graves, D. T. (2014). FOXO transcription factors: their clinical significance and regulation. BioMed research international, 2014, 925350. https://doi.org/10.1155/2014/92535
Wang, J., Wang, F., Zhang, P., Liu, H., He, J., Zhang, C., Fan, M., & Chen, X. (2017). PGC-1α over-expression suppresses the skeletal muscle atrophy and myofiber-type composition during hindlimb unloading. Bioscience, biotechnology, and biochemistry, 81(3), 500–513. https://doi.org/10.1080/09168451.2016.1254531
Zammit P. S. (2017). Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Seminars in cell & developmental biology, 72, 19–32. https://doi.org/10.1016/j.semcdb.2017.11.011
Zhang, P., Chen, X., & Fan, M. (2007). Signaling mechanisms involved in disuse muscle atrophy. Medical hypotheses, 69(2), 310–321. https://doi.org/10.1016/j.mehy.2006.11.043
Yamamoto, M., Legendre, N. P., Biswas, A. A., Lawton, A., Yamamoto, S., Tajbakhsh, S., Kardon, G., & Goldhamer, D. J. (2018). Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration. Stem cell reports, 10(3), 956–969. https://doi.org/10.1016/j.stemcr.2018.01.027
Yoshiko, A., Yamauchi, K., Kato, T., Ishida, K., Koike, T., Oshida, Y., & Akima, H. (2018). Effects of post-fracture non-weight-bearing immobilization on muscle atrophy, intramuscular and intermuscular adipose tissues in the thigh and calf. Skeletal radiology, 47(11), 1541–1549. https://doi.org/10.1007/s00256-018-2985-6
You, J. S., Anderson, G. B., Dooley, M. S., & Hornberger, T. A. (2015). The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Disease models & mechanisms, 8(9), 1059–1069. https://doi.org/10.1242/dmm.019414
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Silma Rodrigues Gonçalves; Carla Roberta Tim; Cintia Cristina Santi Martignago; Marcelo Cavenaghi Pereira Silva; Carlos Alberto Anaruma; Lívia Assis Garcia
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.