Avaliação da precisão de diferentes protocolos de aquisição de TCFC usados em modelos de prototipagem rápida
DOI:
https://doi.org/10.33448/rsd-v9i11.9842Palavras-chave:
Prototipagem rápida; Tomógrafo computadorizado de feixe cônico; Tamanho do voxel; Simulação de tecido mole.Resumo
Este estudo comparou os protocolos de aquisição do sistema de Tomografia Computadorizada de Feixe Cônico (TCFC), para avaliar a influência na precisão da imagem por diferentes tamanhos de voxel e presença de tecido mole. A aquisição tomográfica foi realizada em mandíbula de porco nos estados fresco (F) e seco (D) com tamanhos de voxels de 0,4, 0,3 e 0,25 mm. O padrão ouro foi obtido pela varredura de mandíbula seca coberta com sulfato de bário com tamanho de voxel de 0,25 mm. As imagens foram tratadas no programa MIMICS®, e áreas de ruído foram removidas manualmente, utilizando limiar fixo para fins de geração de janelas de impressão 3D. Cada janela foi sobreposta virtualmente ao padrão ouro por meio do software MeshLab, obtendo-se valores de erros absolutos entre as malhas, gerando um mapa de discrepâncias. Foram encontradas diferenças significativas entre as janelas D 0,30 vs. F 0,30, D 0,30 vs. F 0,25, D 0,30 vs. D 0,25, D 0,30 vs. F 0,40, F 0,30 vs. D 0,25, F 0,25 vs. D 0,25, F 0,25 vs. D 0,40, D 0,25 vs. F 0,40, D 0,25 vs. D 0,40 e F 0,40 vs. D 0,40, (p <0,05). Observou-se que as janelas de mandíbula seca apresentaram menor média e desvio padrão dos quando comparadas às janelas de mandíbula frescas. O protocolo com voxel de 0,25 mm apresentou o resultado mais acurado e a presença de tecidos moles influenciou na acurácia da imagem quando alguns protocolos foram comparados estatisticamente.
Referências
Ahmed, M., & Ali, S. (2019). Computer guided temporomandibular joint reconstruction of Kaban III hemifacial microsomia with anotia: A case report. Int J Surg Case Rep, 57, 52-56.
Alsharbaty, M. H. M., Alikhasi, M., Zarrati, S., & Shamshiri, A. R. (2019). A clinical comparative study of 3-dimensional accuracy between digital and conventional implant impression techniques. J Prosthodont, 28(4), e902-e908.
Barbero, B. R., Ureta, E. S. (2011). Comparative study of different digitization techniques and their accuracy. Computer-Aided Desing, 43(2), 188-206.
Bibb, R., Winder, J. (2010). A review of the issues surrounding three-dimensional computed tomography for medical modelling using rapid prototyping techniques. Radiography, 16(1), 78-83.
Bombeccari, G. P., Candotto, V., Giannì, A. B., Carinci, F., & Spadari, F. (2019). Accuracy of the cone beam computed tomography in the detection of bone invasion in patients with oral cancer: a systematic review. Eurasian J Med, 51(3), 298-306.
Brüllmann, D., & Schulze, R. K. (2015). Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today? Dentomaxillofac Radiol, 44(1), 20140204.
Chai, J., Liu, X., Schweyen, R., Setz, J., Pan, S., Liu, J., & Zhou, Y. (2020). Accuracy of implant surgical guides fabricated using computer numerical control milling for edentulous jaws: a pilot clinical trial. BMC oral health, 20(1), 288.
Damstra, J., Fourie, Z., Slater, J. J. R. H., & Ren, Y. (2010). Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes. Am J Orthod Dentofacial Orthop, 137(1), 16.e1-16.e6.
Dawood, A., Patel, S., & Brown, J. (2009). Cone beam CT in dental practice. Br Dent J, 207(1), 23-8. doi: 10.1038/sj.bdj.2009.560. PMID: 19590551.
De Souza, L. R. M. F., Faintuch, S., Nicola, H., Bekhor, D., Tiferes, D. A., Goldman, S. M., Ajzen, A. S., & Szejnfeld, J. (2004). A tomografia computadorizada helicoidal no diagnóstico da litíase ureteral. Rev Imagem, 26(4), 315-321.
Doyle, S., Wiltz, M. J. & Kraut, R. A. (2015). Comparison of cone-beam computed tomography and multi-slice spiral computed tomography bone density measurements in the maxilla and mandible. N Y State Dent J, 81(4), 42-5.
Fernandes, T. M., Adamczyk, J., Poleti, M. L., Henriques, J. F., Friedland, B., & Garib, D. G. (2015). Comparison between 3D volumetric rendering and multiplanar slices on the reliability of linear measurements on CBCT images: an in vitro study. J Appl Oral Sci, 23(1), 56-63.
García-Sanz, V., Bellot-Arcís, C., Hernández, V., Serrano-Sánchez, P., Guarinos, J., & Paredes-Gallardo, V. (2017). Accuracy and Reliability of Cone-Beam Computed Tomography for Linear and Volumetric Mandibular Condyle Measurements. A Human Cadaver Study. Scientific reports, 7(1), 11993.
Hassan, B., Souza, C. P., Jacobs, R., Berti, S. A., & Van der Stelt, P. (2010). Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clin Oral Investig, 14(3), 303-10.
Hassan, R., Aziz, A. A., Ralib, A. R. M., & Saat, A. (2011). Computed tomography of blunt spleen injury: a pictorial review. Malay J Med Sci, 18(1), 60–67.
Hatcher, D C. (2010). Operational principles for cone-beam computed tomography. J Am Dent Assoc, 141(Suppl 3), 3S-6S.
Juerchott, A., Saleem, M. A., Hilgenfeld, T., Freudlsperger, C., Zingler, S., Lux, C. J., Bendszus, M., & Heiland, S. (2018). 3D cephalometric analysis using Magnetic Resonance Imaging: validation of accuracy and reproducibility. Sci Rep, 8(1), 13029.
Kamburoğlu, K., & Yüksel, S. (2011). A comparative study of the accuracy and reliability of multidetector CT and cone beam CT in the assessment of dental implant site dimensions. Dentomaxillofac Radiol, 40(7), 466–9.
Loubele, M., Asseche, N. V., Carpentier, K., Maes, F., Jacobs, R., Steenberghe, D. V., & Suetens, P. (2008). Comparative localized linear accuracy of small-field cone-beam CT and multislice CT for alveolar bone measurements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 105(4), 512-8.
Liang, X., Lambrichts, I., Sun, Y., Denis, K., Hassan, B., Li, L., Pauwels, R., & Jacobs, R. (2010). A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy. Eur J Radiol, 75(2), 270-4.
Maret, D., Telmon, N., Peters, O. A., Lepage, B., Treil, J., Inglèse, J. M., Peyre, A., Kahn, J. L., & Sixou, M. (2012). Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT. Dentomaxillofac Radiol, 41(8), 649-55.
Morea, C., Hayek, J. E., Oleskovicz, C., Dominguez, G. C., & Chilvarquer, I. (2011). Precise insertion of orthodontic miniscrews with a stereolithographic surgical guide based on cone beam computed tomography data: a pilot study. Int J Oral Maxillofac Implants, 26(4), 860-5.
Panzarella, F. K., Junqueira, J. L. C., Oliveira, L. B., Araujo, N. S., & Costa, C. (2011). Accuracy assessment of the axial images obtained from cone beam computed tomography. Dentomaxillofac Radiol, 40(6), 369-78.
Pitale, U., Mankad, H., Pandey, R., Pal, P. C., Dhakad, S., & Mittal, A. (2020). Comparative evaluation of the precision of cone-beam computed tomography and surgical intervention in the determination of periodontal bone defects: A clinicoradiographic study. Journal of Indian Society of Periodontology, 24(2), 127–34.
Ponce-Garcia, C., Ruellas, A., Cevidanes, L., Flores-Mir, C., Carey, J. P., & Lagravere-Vich, M. (2020). Measurement error and reliability of three available 3D superimposition methods in growing patients. Head & face medicine, 16(1), 1
Skjerven, H., Riis, U. H., Herlofsson, B. B., & Ellingsen, J. E. (2019). In vivo accuracy of implant placement using a full digital planning modality and stereolithographic guides. Int J Oral Maxillofac Implants, 34(1), 124-32.
Taft, R. M., Kondor, S. & Grant, G. T. (2011). Accuracy of rapid prototype models for head and neck reconstruction. J Prosthet Dent, 106 (6), 399-408.
Van der Meer, W. J., Vissink, A., Raghoebar, G. M., & Visser, A. (2012). Digitally designed surgical guides for placing extraoral implants in the mastoid area. Int J Oral Maxillofac Implants, 27(3), 703-7.
Watanabe, H., Honda, E., & Kurabayashi, T. (2010). Modulation transfer function evaluation of cone beam computed tomography for dental use with the oversampling method. Dentomaxillofac Radiol, 39(1), 28-32.
Weitz, J., Deppe, H., Stopp, S., Lueth, T., Mueller, S., & Hohlweg-Majert, B. (2011). Accuracy of templates for navigated implantation made by rapid prototyping with DICOM datasets of cone beam computer tomography (CBCT). Clin Oral Investig, 15(6), 1001-6.
Yi, J., Sun, Y., Li, Y., Li, C., Li, X., & Zhao, Z. (2017). Cone-beam computed tomography versus periapical radiograph for diagnosing external root resorption: A systematic review and meta-analysis. Angle Orthod, 87(2), 328-37.
Zeng, F. H., Xu, Y. Z., Fang, L., & Tang, X. S. (2012). Reliability of three dimensional resin model by rapid prototyping manufacturing and digital modeling. Shanghai Kou Qiang Yi Xue, 21(1), 53-6.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Paola Fernanda Leal Corazza; Fernando Martins Baeder; Daniel Furtado Silva; Ana Carolina Lyra de Albuquerque; Jorge Vicente Lopes Silva; José Luiz Cintra Junqueira; Francine Kühl Panzarella
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.